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Abstract

A vexing puzzle about vagueness, rationality, and evolution runs, in crude abbreviation,
as follows: vague language use is demonstrably suboptimal if the goal is efficient, precise and
cooperative information transmission; hence rational deliberation or evolutionary selection
should, under this assumed goal, eradicate vagueness from language use. Since vagueness
is pervasive and entrenched in all human languages, something has to give. In this paper,
we focus on this problem in the context of signaling games. We provide an overview of a
number of proposed ways in which vagueness may come into the picture in formal models of
rational and evolutionary signaling. Most argue that vague signal use is simply the best we
can get, given certain factors. Despite the plausibility of the proposals, we argue that a deeper
understanding of the benefits of vagueness needs a more ecological perspective, namely one
that goes beyond the local optimization of signaling strategies in a homogeneous population.
As an example of one possible way to expand upon our current models, we propose two variants
of a novel multi-population dynamic of imprecise imitation where, under certain conditions,
populations with vague language use dominate over populations with precise language use.

1 Vagueness and rationality

The classical philosophical problem of vagueness is most starkly embodied by the sorites paradox.
The original formulation is attributed to Eubulides, an ancient Megarian philosopher (Sorensen,
2009), and uses the example of a heap of sand: if no removal of one grain of sand can make a
heap into a non-heap, one can repeatedly remove all but one grain of sand from something that is
clearly a heap and be forced to acknowledge that the remaining single grain of sand is still a heap;
otherwise, it seems, one would have to accept that there is a determinate number of grains that
forms a heap, and anything under it is not a heap. Neither choice is, however, intuitively satisfying.
The paradox is interesting because it can be made general and re-applied to many other words
besides ‘heap’. Predicates for which one can find a suitable instance of the general formulation
of the sorites paradox are called vague. Paradigmatic examples besides ‘heap’ include ‘tall’; ‘red’,
‘bald’, ‘tadpole’, and ‘child’ (Keefe and P. Smith, 1997). How widespread is the problem? It
is easy to find more examples of predicates based on more finely grained properties—as ‘tall’ is
intuitively based on height—for which constructing a sorites paradox would be easy. Mereological
nihilists argue that instances of the sorites paradox can be designed for any material object that
can be decomposed into small enough parts. If one subscribes to the scientific picture of matter as
composed of molecules and atoms, this applies to tables and chairs, cats and mats, and any other
ordinary thing (Unger, 1979). Bertrand Russell famously argued (1923) that all words, including
“the words of pure logic,” are vague when used by human beings.

If one thinks of language as governed by logical rules, and of rationality as including the ability
to follow those rules, the sorites paradox seems prima facie to demonstrate that vagueness and
rationality are incompatible. But one can think of language in different terms. One possibility is
to think of signs as tools agents use to coordinate actions. An example of a way to formally study
language along those lines is the game-theoretic framework of signaling games (Lewis, 1969/2011).
Within such an approach, rationality can be seen as the ability to choose the use of signs that
is optimal to achieve some form of coordination. The existence of vagueness in such models
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would not be at odds with rationality as long as vague languages turn out to be optimal for the
purposes at hand. However, as Barton Lipman (2009) argues in detail, this is typically not the
case. The problem can be put very succinctly as follows. In standard game-theoretic models of
communication, vague signal use yields a lower expected utility than crisp use. Therefore, given
that the dynamics (be it natural selection, cultural evolution, or rational choice) maximize utility,
vagueness should be weeded out by these forces, giving rise to only precise languages. Thus it
would be irrational to stick to vague language use when one could (theoretically) switch to a better
system. But vagueness is pervasive in natural language, and there is no reason to believe it is going
away. The problem seems to be a theoretically serious one, but it does not obviously undermine
our everyday linguistic practices. Most of the time we seem to communicate just fine. Therefore,
the issue must lie with the conceptions we have of the forces or mechanisms that underlie those
practices. Lipman concludes that “we cannot explain the prevalence of vague terms in natural
language without a model of bounded rationality which is significantly different from anything in
the existing literature” (2009, p. 1).

Here we survey proposals for addressing vagueness in the context of signaling games, but
before we start we want to establish some vocabulary to better frame the upcoming discussion.
Rationality is an elusive notion that is frequently debated in areas like philosophy, psychology, and
economics. Discussions around it usually touch on different aspects of the concept without always
clearly demarcating them; this is what we want to do before going further. The aforementioned
logical picture of language and meaning is focused on dichotomies like true and false, meaningful
and meaningless, correct and incorrect. A sentence can be true or false only if it is meaningful, and
it is meaningful if it is constructed according to correct rules. Rationality is intimately connected
with the ability to follow certain procedures, not only of sentence production, but ultimately
of sentence combination and reasoning (think of what is required for making a logically valid
deductive inference). This is an example of what we will call a procedural account of rationality,
one which focuses more on the means rather than the ends. One can also do the opposite and
focus on the consequences instead. Instrumental rationality, as it is typically called, characterizes
an agent’s choice as rational if it maximizes the possibility of achieving a desired goal, regardless of
the means. The notion is linked to David Hume (1738/2005), epitomized in the following assertion:
“Reason is, and ought to only be the slave of the passions.” Instrumental rationality is close to a
notion of rational choice that is used in economics and game theory:! agents are rational if and
only if they make decisions that maximize their expected utility. A more in-depth discussion of
the opposition in the context of theoretical economics can be found, for example, in the work of
Herbert A. Simon (e.g. 1986).2

When developing models where rationality is relevant, be it constructing a logical system or
setting up a formal game, the assumed epistemic relation between agents and their environment
can come to bear on considerations of rationality. The verdict over how rational certain choices
are can vary depending on how accurate and complete an agent’s knowledge is of its environment,
the goals to be achieved, the choices or rules available, the relation between those choices and the
objectives, and so forth. In this respect, we will call an agent omniscient if it is in possession
of the same information as the modeler, whereas of an agent with less than that we will say
that it only has limited awareness of the relevant aspects of the model. Models working within
the logical picture typically do not make a distinction between modeler and agent, and thus lack
room to express these epistemic gaps. By abstracting away from language users, these models
also typically do not represent potential interactions between them, let alone allow for repeated
interaction and language change. In other types of models, however, a further aspect of rational
choice needs to be considered, namely the ability of agents to make accurate predictions about
how other agents behave. We can say that an agent is more or less strategic depending on the
extent to which she is able to anticipate the actions and beliefs of other agents, and to predict
medium/long term gains from repeated play. Lack of perfect knowledge of the situation or lack

n fact, it has been argued (Vanderschraaf, 1998) that Hume’s whole account of convention is very closely in
line with modern game theory.
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of ability to choose strategically can be caused by many possible factors. These include, among
other things, limitations in handling information (receiving, storing, retrieving, transmitting) and
limited computational resources to solve complex problems. We can talk about bounded rationality
to characterize the choices of such agents. While the above definition of instrumental rationality
is usually understood as requiring a single choice to maximize the expected utility in a single
concrete decision situation, one might also be interested in more general choice mechanisms (e.g.
Fawcett, Hamblin, and Giraldeaub, 2013; Galeazzi and Franke, 2017; Hagen et al., 2012; Zollman
and Smead, 2010). A choice mechanism is a general way of behaving for an agent involved in a
variety of decision situations. When considering only a single situation, rationality can only be
local. If we take into account the possibility of the agent’s choice or choice mechanism hinging
on multiple situations, we can also talk about global rationality. This can be important because,
hypothetically, there could be choice mechanisms that are sub-optimal at a local level (for each
situation) but are actually perfectly rational at a global level.

Note that we consider that, in theory, most combinations of these aspects are possible. Al-
though we have been pinning procedural rationality to the logical picture of language, this is only
with the most traditional logical systems in mind. We are not denying that advances in dynamic,
epistemic, fuzzy, paraconsistent, and other types of logic could potentially enable one to capture
procedural rationality with different characteristics. Game-theoretical models of language can,
on the other hand, also combine local instrumental rationality with omniscient highly strategic
agents. Our objective here is not to survey all the possibilities. We want to focus on signaling
games as a framework for the study of language use and meaning. The vocabulary just introduced
will, we hope, help inform the discussion that follows. We proceed by introducing the framework
of signaling games in section 2. In section 3 we look into explanations of vagueness in a particular
kind of signaling game. Section 4 tries to generalize the considerations of these proposals to argue
for an approach to vagueness anchored in a more global notion of rationality. We propose and
analyse the results of a novel multi-population model of imprecise imitation in section 5, and
summarize our conclusions in section 6.

2 Signaling games

Signaling games were first introduced as models of communication by David Lewis (1969/2011).
In order to support the idea that linguistic conventions can arise without any prior conventional
activity, Lewis considers situations where agents’ choices involve sending and receiving signals or
messages.®> One can think of two players with different roles. The first player, the sender, has
knowledge about which of a number of possible states of affairs obtains and, depending on this
information, chooses a signal to send. The second player, the receiver, has knowledge about which
signal the sender chose and, based on this information, chooses one of several possible responses.
A preference relation exists between responses and states of affairs, and a payoff is attributed
to each player based on the choices of both. Note that Lewis assumes that no player has any
preference regarding the particular signal that is used for a given state, provided that it enables
advantageous coordination with responses. Formally, in order to describe the setup all we need
is to specify a set of possible states of affairs T', a probability measure P such that P(¢) is the
probability or frequency with which ¢ € T" occurs, a set of available signals or messages M, a set
of responses or actions A, and a pair of utility functions Ug r : T x A — R, one for the sender
and one for the receiver, each of which yields a payoff value for each possible pairing of state and
action. These so-called signaling problems can be seen as particular cases of coordination problems
if we consider the players’ choices to be of contingency plans or strategies. A sender strategy is a
specification of a choice of message for each possible state of affairs. It thus describes the sender’s
behavior conditional on the state of affairs that obtains. A receiver strategy analogously specifies
a choice of action for each possible message. Formally, what the sender chooses is a function
o : T — M and the receiver a function p : M — A. The expected utility EU of a strategy can
be calculated by using the utility function and aggregating payoffs for all pairings of states of
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affairs and actions, weighted by the probability of each state. Concretely, the expected utility
of o given p is EUs(o | p) = > ,cp P(t) Us(t,p(o(t))), and the expected utility of p given o
is EUr(p | 0) = > ,cp P(t) Ur(t,p(c(t))). As an example, consider a game with 7" = {t1,12},
M = {mi,ma}, A ={ay,as}, P(t;) = P(t2) = 0.5 and the following utility matrix:

ay a9
t1 [1,1 10,0
ty [0,0 ] 1,1

Consider sender strategy o = {t; — mq,ts — m;} and receiver strategy p = {mj — as, ma — a; }.
These would have an expected utility of 1 for both sender and receiver, since when t; obtains with
probability 0.5 the sender will use mso, and to this message the receiver will respond with aq,
which achieves a payoff of 1, and when ¢, obtains with probability 0.5 the sender will use m, and
to this message the receiver will respond with as, which also achieves a payoff of 1. They also
represent one of the two stable conventions in this game, the other being the pair of strategies
o = {t; = my,ta = mo} and p = {my — a1, ms — as}. Conventions of this kind in a signaling
problem are what Lewis calls signaling systems. An example of complete miscoordination would
be o = {t; = mq,ta = ma} and p = {Mmy1 — a2, ma — a1 }. Partial coordination is achieved, for
example, by o = {t; — my,ts — my} and p = {mq — a1, ma — as}.

Lewis’ account of the stability of conventions rests on what could be considered strong de-
mands. Namely, there needs to be a state of affairs that indicates to everyone involved that a
certain regularity will hold, as well as “mutual ascription of some common inductive standards
and background information, strategic rationality, mutual ascription of strategic rationality, and so
on” (1969/2011, pp. 56-57). Agents are thus envisioned as omniscient and highly strategic. These
requirements can seem excessive, and even more so if we consider how simple signaling systems are
when compared to human languages. The models were introduced to help explain how language
could have gotten off the ground as a conventional system without any sort of prior agreement.
However, if one considers the circumstances of the origins of human language, it seems implausible
that the agents that started making use of primordial signaling systems which (hypothetically)
evolved into languages possessed such advanced rationality. Furthermore, communication through
simple message exchange is something that almost all animals do: monkeys use calls, birds use
singing, bees use dances, ants use pheromone trails, and so on. A plausible account of the origin
of language should first explain how signaling systems could get started, without requiring high
standards of rationality from the agents involved.

In order to address this problem, Brian Skyrms (1996) proposes studying signaling problems
in evolutionary terms. Rather than imagining, as Lewis does, rational agents making conscious
decisions in possession of knowledge of the game and expectations of the behavior of other agents,
one can imagine a simpler scenario inspired by biological evolution: there is a population of agents
with biologically hardwired behaviors for engaging in interactions characteristic of a signaling
problem; utility does not represent preference, but rather fitness for survival and reproduction;
the make-up of the population evolves based on the relative fitness of the strategies represented
in the population. Such a setup attempts to capture the main features of natural selection:
in a diverse population, agents with more successful strategies thrive, while agents with less fit
strategies die off. Although the inspiration for this scenario is biological evolution, similar things
could be said about how ideas spread in a population of agents who can adopt or abandon them
depending on how successful they prove to be (e.g. Benz, Jager, and van Rooij, 2006; Pagel, 2009;
Thompson, Kirby, and K. Smith, 2016), i.e. we can interpret these notions in terms of cultural
evolution (Boyd and Richerson, 1985; Dawkins, 1978). The principles can be captured in formal
models that abstract away from details of single interactions and behavior of individual agents, for
example in the replicator dynamics (Taylor and Jonker, 1978). The only things relevant to this
equation are the relative proportions of strategies in a given population and the utility function.
Using it, one can compute which strategies evolve under which conditions.

Skyrms’ evolutionary game theory approach to signaling games not only gives more plausible
grounds to support Lewis’ discussion of convention, it also accomplishes an important conceptual
change: it moves most of the theory and mathematical formalism to the descriptive side of the



investigation. Utility represents how the modeler views the signaling problem and understands
the relative advantages or disadvantages of different possible strategy combinations. Dynamics
describe how strategies can evolve when driven by mechanisms of utility maximization. The
shift in perspective allows interpretations that accommodate limited non-strategic agents. While
the general framework manages to abstract quite some details away from the formalization, it
nevertheless leaves room for them, especially when it comes to the dynamics. We have already
mentioned the replicator equation that can be seen as representing biological or cultural evolution,
but one can also use dynamics inspired by learning mechanisms (e.g. Roth and Erev, 1995), or even
ones assuming a high degree of knowledge of the game and other players (e.g. Gilboa and Matsui,
1991; Miihlenbernd, 2011; Spike et al., 2017). This range of options goes hand in hand with a
range of pictures of rationality, from nothing more than survival of the fittest in a biologically-
inspired setting, to a certain degree of instrumental but limited and non-strategic rationality in
the case of learning dynamics, to higher levels of rationality and even recursive strategic reasoning
about the co-players’ beliefs and choices. Each of these can be utilized depending on the problem
that one is interested in characterizing. Thus, although Skyrms shows that high requirements of
rationality are not necessary for signaling conventions to evolve, the framework does leave room
for the study of linguistic interactions between highly strategic agents.

The characterization of signaling problems in terms of evolutionary game theory allows us
to explain why certain equilibria come to be and how. A core notion in this context is that of
an evolutionary stable state (Maynard Smith, 1982): an equilibrium situation that a population
tends to under standard evolutionary pressures, and to which it returns if slightly disturbed.
With these tools, one can better understand why signaling systems are stable even without any
strong assumptions of rationality. One can also map out which initial conditions drive the system
towards which equilibria and which do not. In a simple case like the example discussed above,
an evolutionary process of the kind described always drives the population into a state where
one signaling system takes over completely. More complex signaling problems may have different
evolutionary outcomes, sometimes unexpected ones. Skyrms (2010) gives an overview of different
topics studied using signaling games, including expansions of the framework itself (for example,
considering other dynamics beyond the replicator equation), exploration of other factors that
impact the evolution of signaling (for example, how agents are interconnected), or variations on
the signaling problem and its basic assumptions (for example, loosening the alignment of interests
in order to provide accounts of deceptive signal use). Other uses of signaling games include
discussions of categorization (e.g. Jiger and van Rooij, 2007), compositionality (e.g. Barrett,
2009), incommensurability (e.g. Barrett, 2010), to name a few. More recent overviews are given
by Huttegger (2014), Huttegger et al. (2014), and Franke and Wagner (2014). In the following
section, we discuss how a particular type of signaling game has been used to address the problem
of vagueness.

3 Vagueness in sim-max games

The sorites paradox requires us to assume a relation between the vague terms and a more precise
underlying dimension (height for tallness, number of hairs for baldness, number of grains of sand
for “heapness”, and so on). Not only does this property need to be much more fine-grained than
the vague term, but it also needs to have some structure: there is at least an order between the
elements in it (thinking of height in centimeters, 180 > 179 > ... > 120), and usually even a degree
of how far apart these elements are from each other. In terms of signaling games, one can model
this using a state space constituted of values of the underlying dimension, and a message space
constituted by the terms in question. Because of the difference in granularity, we will typically be
interested in cases where the state space is much larger than the message space. We can model
the structure of the state space by defining a distance or similarity function between every value,
effectively making it a metric space. Another important ingredient of the sorites paradox is the
acknowledgment of a certain degree of tolerance with respect to whether a certain term applies
or not. This tolerance decreases with distance in state space: assuming a 180cm person is tall,
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Figure 1: Example strategies for a state space with 50 states. Each line corresponds to a message.
For the sender, it plots for each state the probability that the message is used. For the receiver,
it plots for each state the probability that the response is that state, given the message.

one would easily tolerate the use of the term for a person measuring 179cm, less so for someone
who is 170cm, and much less so for 160cm. This can be modeled using a utility function that is
continuous rather than discrete and that monotonously decreases with distance, i.e. success is not
a matter of black and white, right or wrong, but a matter of degree, of how close the receiver got
to the optimal response to the sender’s perceived state.

The simplest type of game to study in this scenario is one where the state space and the action
space are the same. We can imagine this as a game of guessing states of affairs: the sender has
knowledge of a particular state, sends a message to the receiver, who in turn has to guess it;
their payoff, as discussed above, is proportional to how close the guess got to the original state.
These games, called similarity-maximization or sim-max games for short, were first introduced
by Gerhard Jager and Robert van Rooij (Jager, 2007; Jager and van Rooij, 2007) and further
studied by Jager, Metzger, and Riedel (2011). What these authors find about this setup is that
the evolutionary stable states are what they call Voronoi languages. Roughly, these are situations
where the sender uses messages in a way that can be seen as partitioning the state space into
convex regions, and the receiver responds with the central element of those regions.

In an abstract setup, using 50 states uniformly distributed over the unit interval and two
possible messages, such an optimal language looks like what we see in Figure la: at a specific
point, the probability that the sender uses one message decays sharply from 1 to 0, and increases
sharply from 0 to 1 for the other message; the response of the receiver for each message is a
degenerate distribution over the state space which assigns all probability mass to a single state.
These strategies give mutually optimal behavior for a case where the prior probability is the same
for each state and utility is a linear or quadratic function of the distance between the actual state
and the receiver’s guess. In general, at which point the sender switches the use of messages and
which guesses of the receiver are optimal critically hinges on the priors over states and the utility
function. Still, confirming Lipman’s argument, there is no vagueness in such optimal languages.

The sender/receiver strategy pairs that we are looking for look more like Figure 1b, where
the sender’s probability of choosing a certain message gradually changes, and the receiver strat-
egy assigns a positive probability to more than one state for each message. What characterizes
vagueness in these models is thus a smooth and monotonous transition between parts of the state
space where a message is clearly used and where it is clearly not. This means that, for some states
in the middle of the state space, there is uncertainty as to which message will be used by the
sender, whereas for states in the extremes this is as good as certain. For the receiver part, there
is uncertainty as to which state will be picked for each message.

The interpretation of this uncertainty will be different depending on the interpretation of the
model. If we see it as an explanatory model of how two agents play the game, we can see it as
randomization. If we interpret the model as descriptive, it simply represents expected behavior
in a manner agnostic to the underlying mechanisms. A third option is to see probabilities as



capturing relative numbers in a population of agents. For example, if the sender strategy assigns
a probability of 0.4 to the event of message m being sent for state ¢, this would mean that 40%
of the population uses that message for that state. This latter option leaves open the possible
interpretation that each agent commands a crisp language and vagueness is only a population-level
effect. However, given the level of abstraction of the description so far, none of this is necessarily
implied by the model. Our preferred stance is to see the model as descriptive, but we do not wish
to focus on that debate here. The question we want to address is: what additional modifications
to sim-max games are sufficient for optimal languages to be more like Figure 1b, rather than like
Figure 1a?

Franke, Jiger, and van Rooij (2011) make two suggestions as to how vagueness in a signaling
game can be boundedly rational, i.e. how vagueness could arise as a consequence of cost-saving
limitations in the cognitive capacities of instrumentally rational agents. The first proposal is
called limited memory fictitious play (LMF) and models agents playing a sim-max game where
their ability to recall past interactions with others is limited to a certain number. For a given
interaction, each agent uses her limited memory of the other agent’s past behavior to estimate
the other’s strategy, and plays an instrumentally rational best response to that strategy. In order
to study the evolution of strategies in repeated interaction, the authors model several individual
agents in actual play. What they observe is the emergence of vague signaling at the level of
the population, i.e. population averages of individual strategies exhibit the hallmarks of a vague
language. This is because each agent recalls a different history of previous play and so holds slightly
different beliefs about language use. However, each agent still commands a crisp language, which
is an inadequate feature of the model if the intention is to capture how vagueness presents itself
in human languages.

In order to overcome this limitation, Franke, Jager, and van Rooij make another proposal
using the notion of a quantal response equilibrium (QRE). The idea, inspired by experimental
psychology, is to model the choice of best response as stochastic rather than deterministic.* A
prominent explanation for such soft-max or quantal choice behavior is that agents make small
mistakes in the calculation of their expected utilities (Train, 2009). They still choose the option
with the highest expected utility, but each assessment of the expected utilities is noise perturbed.
This, in turn, may actually be boundedly rational since the calculation of expected utilities relies
on assessing stochastic uncertainty, which in turn may be costly to calculate precisely. Choice
based on a few samples from a distribution can be optimal if taking more samples or other means
of better approximating probabilistic beliefs is resource costly (e.g. Sanborn and Chater, 2016;
Vul et al., 2014). The degree to which agents tremble in the calculation of expected utilities and
therefore deviate from the instrumentally rational behavior can be characterized by a parameter.
Franke, Jager, and van Rooij find that for low values of this parameter, only babbling equilibria
are possible, where sender and receiver simply randomize, respectively, message and interpretation
choice uniformly. Above a certain value of the parameter, other equilibria of the kind described in
the beginning of this section arise, where agents communicate successfully, though not perfectly,
using fuzzy strategies similar to those depicted in Figure 1b. However, it is not clear whether soft-
max choices capture the right stochastic trembles in decision making as they would arise under
natural sources of uncertainty about the context (see Franke and Correia, 2017).

Cailin O’Connor (2014) proposes a way in which vagueness could be expected to evolve as
a side-effect of a particular type of learning process. She studies sim-max games driven not by
rational choice dynamics, but by generalized reinforcement learning (GRL), a variant of Herrnstein
reinforcement learning (HRL) (Roth and Erev, 1995). In HRL, agents learn to play a signaling
game by strengthening particular choices (of messages for the sender, of responses for the receiver)
proportionally to how successful those choices prove to be in an interaction. O’Connor’s proposal
is to model generalization as the propagation of reinforcement to nearby states, where “nearby”
is defined in terms of distance in state space. For example, if a sender was successful in using
message m for state ¢, she will not only positively reinforce that choice of message for ¢, but also

4Probabilistic choice rules are also the source of vagueness in recent accounts by Lassiter and Goodman (2017)
and Qing and Franke (2014).



for states similar to ¢. This is done to a degree that is proportional to the similarity between ¢
and other states. The dynamics gives rise to vague signaling of the kind we are looking for.

Although there is a close relationship between reinforcement learning and population-level
dynamics (Beggs, 2005; Borgers and Sarin, 1997), O’Connor’s GRL is, on the face of it, an
account of learning between individual players. Also, we need further justification for linking
generalization in reinforcement so closely to the underlying payoff function of the sim-max game.
Why should agents evolve to generalize in exactly the right way? O’Connor suggests that, despite
a language with vagueness having lower expected utility than a language without it, the learning
mechanism that induces vagueness does have evolutionary advantages: it achieves higher payoffs
in a shorter period of time. From a global point of view, learning speed can be an advantage.
Imagine an initial population of agents with random strategies, some using GRL and others using
classical HRL. Although the latter type of agent can hypothetically develop a precise and more
efficient signaling system, agents using GRL could coordinate on vague signaling strategies with
high (though not optimal) expected utility sooner than agents using HRL. In such a scenario, they
could drive the other agents to extinction before the latter had time to achieve coordination and
reap the benefits of a more precise signaling system.

A similar finding is made by Franke and Correia (2017) when studying a variant of the repli-
cator dynamics in which individual agents do not have the ability to generalize but simply make
perceptual mistakes. In a scenario where agents learn by imitation, if one assumes that they do
not have perfect perception, there will always be the possibility for senders to confuse states and
thus learn associations with messages that are different than the ones observed, and for receivers
to similarly mix up responses. Furthermore, it seems reasonable to assume that this confusability
is proportional to state similarity, i.e. that the more similar two states are, the more likely it is
that they will be mistaken for each other. Incorporating these considerations into a derivation of
the replicator dynamics based on imitation processes, Franke and Correia develop a variant of the
dynamic that also induces vague signal use of the kind we expect here. The consequence is very
similar to that of the GRL model discussed above, in that the way the behavior for a given state is
updated takes into account the behavior of similar states, proportionally to their similarity. Given
the known relation between reinforcement learning and the replicator dynamics (Beggs, 2005), it
is actually quite plausible that the two are tightly related (although this would need to be formally
demonstrated). The account is, furthermore, interpretable at a lower level of rationality.

The motivation underlying this model of vague signaling is still one of inevitability. A vague
strategy is not claimed to have higher expected utility than a crisp one. However, the authors
observe an effect similar to that pointed out by O’Connor: signaling converges faster and more
often in scenarios where there is some degree of state confusability. Furthermore, they observe
one additional potentially beneficial property. Running several rounds of simulation for each
parameter set, they measure for each group of results how close resulting strategies are to each
other, and how they would fare playing against one another. The results show that the within
group distance between strategies becomes smaller with growing confusability, and the within
group expected utility is actually higher for strategies evolving under a certain degree of state
confusion. Thus, some amount of uncertainty seems to promote more homogeneous populations of
signalers that are better at achieving cooperation within a group. What is left to show, as it was
with O’Connor’s GRL approach, is whether the potential payoff advantages that were observed in
simulations actually suffice to promote vague language use in an encompassing model of multi-level
selection. The following section motivates the need for taking a more ecological approach to the
evolution of vagueness, before section 5 gives a concrete model.

4 The ecology of vagueness

Arguments of the kind presented by Lipman (2009), that vague signal use is suboptimal when
compared to crisp use, work under various assumptions. Part of the picture formed by these
assumptions is a highly idealized conception of the agents involved and of the context in which
they develop and use signals. These idealizations probably originate, via game theory, from the



conception of rationality of traditional theoretical economics. Herbert A. Simon describes this
picture as follows:

Traditional economic theory postulates an “economic man,” who, in the course of being
“economic” is also “rational.” This man is assumed to have knowledge of the relevant
aspects of his environment which, if not absolutely complete, is at least impressively
clear and voluminous. He is assumed also to have a well-organized and stable system of
preferences, and a skill in computation that enables him to calculate, for the alternative
courses of action that are available to him, which of these will permit him to reach the
highest attainable point on his preference scale. (Simon, 1955, p. 99)

Both Simon and Lipman call for this picture to be revised, and this is what the proposals surveyed
here all do. In order to account for vagueness in natural language in the context of these models,
they peel away from this idealized picture and bring some of these assumptions down to earth. In
the process, they point to ways in which we, as language learners and language users, are finite
beings finding ways to cope with a highly complex and dynamic environment:

1. Our existence is temporally finite; language does not have an infinite amount of time to
evolve, nor can it take an infinite time to be learned. The faster a language can start being
useful, the better;

2. Language learning through experience has to rely on a limited number of observations. Not
only is the state space typically much larger than one can survey in sufficient time, it is even
potentially infinite and constantly changing;

3. A corollary of the former is that there will always be heterogeneity in a population of language
learners, at the very least in their prior experience, since each agent will have relied on a
different set of observations. Furthermore, this information is not directly or fully accessible
to others.

All of these observations support the weakening of modeling assumptions. The research surveyed
here shows us some examples of assumptions which, when weakened, make vague signal use a
natural outcome of certain evolutionary dynamics. But it gives us even more. It suggests ways
in which the mechanisms that lead to vagueness can have positive effects that are extremely im-
portant in the context of the points just enumerated. We learned from O’Connor and Franke and
Correia that vague languages are quicker to converge and adapt, which is valuable given the finite
and dynamic character of our experience (point 1). O’Connor also showed how generalization, an
invaluable feature of any procedure for learning from a limited number of observations (point 2),
leads to vagueness. We also learned from Franke and Correia that state confusability, a mecha-
nism that leads to vague signal use, can have a homogenizing effect on vocabularies, potentially
compensating for the heterogeneity of agents’ experiences (point 3).

What do these observations tell us about rationality? GRL (O’Connor, 2014) and the work
of Franke and Correia (2017) both assume a picture of agents with a basic level of instrumental
rationality, possibly limited awareness of the game, and a lack of strategic capabilities, adapting
their behavior with only short-term gains in sight. These approaches introduce constraints on
agent behavior or information processing that prevent the evolution of crisp signal use. But a
crisp language would still have a higher expected utility than the evolved strategies. Agents in
those models seem to be only as rational as the modelers allow them to be. Despite the plau-
sibility of the mechanisms proposed (limited memory, imprecise calculation of expected utilities,
generalization, state confusability), the results of these models feel somewhat bittersweet because
of the hypothetical possibility of an ideal strategy, seemingly barred from the agents in an artificial
manner. Couldn’t a more rational agent evolve and drive the system into crisp signal use? Aren’t
we, human beings, that kind of agent?

Perhaps a deeper understanding of vagueness and the reasons for its pervasiveness in natural
language are to be found only when we broaden the scope of the models employed. All the
models discussed so far explore evolutionary dynamics for one homogeneous population playing



one game. Different types of agents and different game setups are considered, but each of these
different possible scenarios is tested separately. We see at least two ways in which one could
embrace a more ecological perspective. The first is to think about meaning and vagueness from
a more Wittgensteinian perspective. One can see each signaling game as embodying a particular
language game. In Wittgenstein’s picture of language, however, we do not play only one language
game over the course of our existence; there is a plurality of them and which one an agent is
engaged in at a particular moment is never clearly identified, neither are the exact benefits one
might gain by choosing a certain behavior over another. These are furthermore not fixed in time;
old language games fall out of fashion or stop being useful, and new ones emerge all the time (see
Wittgenstein, 1953/2009, and in particular §23).

We can look for rationality at several levels in this pluralistic picture. First, as before, there
is the actual behavior of a single agent in each actualized language game. As mentioned above
in connection the soft-max choice function used by Franke, Jéger, and van Rooij (2011), behavior
that strictly maximizes expected utility under uncertainty may be resource heavy, so it might be
compatible with local strategic rationality that agents’ production choices are stochastic. Second,
if we look at behavior across many game types and contexts, there is also the level of an agent’s
internal theory of how words and phrases are likely to be used (or even normatively: how messages
should be used), conditional on a given context. Notice that a single agent’s rational beliefs about
linguistic practices or linguistic meaning may well have to reflect the actual stochasticity: under
natural assumptions about information loss, the best belief for prediction matches the actual
distribution in the real world (e.g. Vehtari and Ojanen, 2012). In sum, both at the level of
behavior and at the level of beliefs about use or meaning, we should expect to find vagueness.
Still, despite the natural vagueness, there does not seem to be anything fundamentally missing
or conceptually incoherent in a naturalistic, rationality- or optimality-driven explanation of what
each agent is doing or what each agent believes about language, use and meaning.

Another way to go beyond locality is to work with more heterogeneous population models.
The mechanisms that lead to vague signal use, as O’Connor (2014) and Franke and Correia
(2017) stress, have the aforementioned important advantages of faster speed of convergence, higher
flexibility, and homogenization. The argument goes that these side-effects, by temporarily enabling
a higher expected utility, could allow a population using some generalization (or affected by some
imprecision) to take over. However, despite its intuitiveness, the argument is based on comparing
isolated runs of different dynamics. The models do not allow the hypothesis to be tested, because
they do not accommodate different populations evolving together. In the remainder of the paper
we propose a way to do this based on the model of Franke and Correia (2017). We introduce
two variants of a multi-population model of the imprecise imitation dynamics, where populations
characterized by different imprecision values interact and evolve together. Using this model, we
can better see under which conditions the hypothesized advantages of some imprecision can lead
to the evolution of vagueness.

5 Two multi-population models of imprecise imitation

We build upon the model of Franke and Correia (2017), adding to the imprecise imitation dynamics
support for multiple populations with different imprecision values evolving together. The resulting
evolutionary dynamic has two layers: first, signaling strategies change by imprecise imitation
following the model of Franke and Correia (2017); second, there is evolutionary selection at the
level of the imprecision values themselves. More concretely, imagine agents who are born with
varying perceptual abilities, subsequently learn a signaling strategy by imitation of other agents
(either within or across populations), and depending on the success of the strategies they develop,
are more or less likely to survive and reproduce. In such a setup, evolutionary processes will not
only change the distribution of strategies within a population, where a population is identified by
a shared level of imprecision in imitation, they will also promote those levels of imprecision which
result in the development of more successful signal use.

This is closely related to the ideas behind theories of kin selection (Hamilton, 1964) and
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multi-level (or group) selection (Wilson, 1975). These theories build upon the hypothesis that
selection acts not only to directly favor genes that result in behaviors that benefit individuals,
but also to indirectly favor genes that lead to behaviors that benefit either genotypically (kin) or
socially (group) related individuals (see Okasha, 2006, for more details). In our model there is a
similar structure: there is a process of selection of behavior within each population, and levels of
imprecision are selected across populations based on the strategies they give rise to. We believe
there is an important difference with group and kin selection models in that the two selection
processes in our model act on different entities: the inner shaping signaling behavior, and the
outer selecting levels of imprecision. In any case, we intend our model to be descriptive rather
than causal or explanatory. That means that we do not want to commit to seeing populations
either as kin or as social groups, and use them as merely descriptive abstractions that allow us to
capture the hypothetical impact of indirect selection processes.’

In the following, we lay down the formal details of our model. Let’s start by defining A to be
the set of imprecision values considered. For each value o € A, the proportion of its population
is given by P(a), such that ) _ ., P(a) = 1. Each population has its own sender and receiver
strategies, represented as ¢® and p®. The probability that a given agent with imprecision «
(or of type «) observes t, when the actual state is ¢, is given by P%(t,|t,). If the same agent
intends to realize t;, the probability that she actually realizes ¢, instead is given by P*(¢.|t;).
Following Franke and Correia (2017, p. 26), we can then define the following values.

Probability that t, is actual if ¢, is observed by an agent of type «a:

P3(talto) o< Pa(ta) Py (tolta)

Probability that a random sender of type a produces m when the actual state is t,:
P2 (mlt,) ZP (tolta)o® (mlt,)

Probability that the actual state is ¢, if a random sender of type a produced m:
Pg(talm) o< Py(ta) Py (mlta)

Probability that ¢, is realized by a random receiver of type « in response to message m:

“(t.|m) = ZP“t It:)p (ts]m)

These formulations are merely parameterized versions of the single-population model. They
encapsulate calculations that one can use to compute expected utilities and strategy update steps
for each type. The latter, however, depend on the types of interaction that we imagine occurring
between populations. In the following sections, we consider two different possibilities.

5.1 Tight population interaction

In a multi-population model with tight interaction between populations, each agent plays with,
observes, and potentially imitates any other agent, regardless of their type. This has an impact
on the expected utilities of sender and receiver strategies of each type, and on the update steps
for those strategies. Let’s start with the expected utilities. For a sender of type «, the expected
utility of its strategy o against all other receiver strategies p*, is given by:

EUZ (m, t,, p* ZP“t te) > P(a') > P (t|m)U (ta, t,)
tr

a’€eA

5We make this note because of the heated debate between the two theories. See Kohn (2008), and Kramer and
Meunier (2016) for more details.
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and, for a receiver of type a, the expected utility of its strategy p® against all other sender
strategies o*, is given by:

EUS (t,m,0") = > P(a)Y " P2 (talm) > PE(to]t:)U ta t)

a’€eA

Expected utilities thus take into account the existence of strategies of other types, and weigh the
relevance of each type o’ according to its relative proportion P(a).

Another important value to calculate has to do with the types that agents observe and imitate.
In a model with tight interaction, we imagine this occurring across populations. Therefore, we can
define the probability that a sender of type a observes a randomly sampled agent play message m
for observed state t, as:

P2 (mlt,) ZPQ (talte) Y P(a')Pg (mlta)

a’'€A

and the probability that a receiver of type « observes a randomly sampled agent choose interpre-
tation ¢, given message m as:

P2 (tolm) = ZP‘”‘tIt > P(o')PS (t,m)

a’'€A

Again, these calculations incorporate the probabilities that the imitating agent might observe the
behavior of an agent of another type a’, weighed by its relative proportion. Finally, the update
step for a sender strategy of type « at time instant ¢ + 1 is given by:

i1 (mlt) oc B (m[t)EUG, (m, t, p)
and similarly for a receiver strategy of type a by:
Py (tm) oc P (tm)EUY, (¢, m, 07)

We here use ¢ and p since there is still an additional adjustment to these values to be calculated
before we get the final strategies o and p.

These formulations cover the evolution of the particular strategies of each type. We can think
of this as the level of cultural evolution: agents are born with a certain level of imprecision and
adopt strategies based on the behavior of others. Alongside this process, we can imagine another
level of selection, where agents die and new agents are born. More successful agents have a higher
likelihood of surviving and reproducing, giving rise to more agents with their level of imprecision.
Levels of imprecision are thus subject to an evolutionary dynamic that is indirectly influenced by
the cultural dynamic. Importantly, only the level of imprecision is passed on to new generations
under this dynamic, not the actual strategies developed by the agents at the cultural level.

We model this process by changing the proportion of each type P(«a) according to the replicator
dynamic. A population of type « consists of agents employing both a sender and a receiver strategy,
thus the overall fitness of the population must include the expected utilities of both. We could
imagine this process happening at a different speed to the cultural process, in which case we could
have different time scales. For the sake of simplicity, we choose to have them both happen at each
time step, but calculate the changes occurring at this level of selection after the calculation for
the other level. We define the proportion of type « at time step ¢ + 1 as:

Pii1(a) x P(a)(EUS  (m,t,pr) + EUS

Oit1 Pit+1

(t,m, o))

In order to additionally account for the fact that strategies are not passed on to new generations,
we mix the evolved strategies of a certain type 0 and p® with new random strategies 6% and p®
(generated at each time step). The idea is that, at each time step, a certain percentage of each
population will consist of “newborn” agents, i.e. agents that haven’t yet had time to evolve their
strategies. We define a parameter  that quantifies this percentage, or as we can also call it the
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birth rate, which we consider to be the same for every population. This mixing finally defines the
strategies for time step ¢ + 1 and can be described in the following formulas:

o (mt) = (1 =75 (mt) + 57, (m]t)
pipa(tm) = (1L =)p 1 (tHm) + 70y (Hm)

Simulation results We performed 25 simulation runs of this model for each of three population
scenarios: only one population with o = 0 (for reference), two populations with « € {0,0.05}, and
three populations with « € {0,0.05,0.1}. For each scenario, starting proportions P(«) were equal
for each value of a. Given the observations by Franke and Correia (2017) that state space size
and tolerance parameter S do not result in important qualitative difference, we fixed these values
at ng = 30 and B = 0.1. We also used a fixed uniform distribution for the priors and a message
space with 2 messages. Each type started with its own randomly generated strategy. Regarding
the duration of the simulations, due to the mixing in of new individuals into the population (birth
rate was fixed at v = 0.05), the convergence criteria is no longer applicable because each strategy
is randomly perturbed at each time step. Therefore, all simulation runs were stopped after 200
iterations.

The first thing to observe from the simulation results is that the population with no imprecision
(o = 0) dominated the other populations in every run. In Figure 2 we plot the evolution of the
proportion of each population in the two-population and three-population scenarios for all trials.
As the plot shows, the population with no imprecision steadily increased its proportion against
the others in every trial. In the three-population scenario, the proportion of type o = 0.05 sees a
slight increase in the beginning of the simulation, but inexorably starts a downward trend. These
observations go against the expectation of Franke and Correia (2017) that faster convergence to
a convex strategy by populations with a certain level of imprecision could give them a temporary
advantage to take over and eliminate other types. The reason for this is interesting in itself.
What happens is that, because of the tight interaction between populations, the strategies of
each type evolve in close tandem with each other. One of the consequences of this is that the
population with no imprecision reaches convexity faster than it would on its own because of the
interaction with the populations with imprecision. We can see this effect by looking into the
percentage of trials with convex sender strategies at a given iteration, for each scenario, and
comparing the three scenarios: populations with no imprecision evolving alone, two populations
(o € {0,0.05}), and three populations (o € {0,0.05,0.1}). This is plotted in Figure 3a. What
we see is more trials reaching convexity earlier for the multi-population scenarios when compared
with the single-population scenario. This effect precludes the hypothesized temporary advantage
of imprecision manifesting itself, but it can be seen as a positive influence of the population(s)
with imprecision on the population with no imprecision.

The flip side of this tight connection between populations is that strategies evolved by popu-
lations with no imprecision are also more vague (in the sense defined in section 3). This is visible
by looking at mean entropy values, namely sender strategy entropy, plotted in Figure 3b, and
receiver strategy entropy, plotted in Figure 3c. The values for the population with no imprecision
are clearly higher in the scenarios where it evolves together with populations with imprecision
than in the scenario where it evolves on its own. Given the trends in population proportions, one
expects this to eventually be eliminated when the population with no imprecision finally takes over
the others, but it is interesting to observe that while populations with vague strategies persist,
the population with no imprecision takes much longer to evolve a fully crisp strategy.

5.2 Loose population interaction

We can also imagine a scenario where populations interact more loosely. Namely, the dynamic
we want to model here is one where agents of a certain type « imitate and learn only from other
agents of the same type, but nevertheless use their signaling strategies with agents from all types.
In order to capture this, we need to make changes to some calculations. Any formula that is not
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Figure 2: Evolution of population proportions through time for each simulation trial of the tight
interaction model. Numbers on top of each plot identify each trial.

14



1.00 ¥ o A It R | é
)

T

0754 It 0.9
Scenario
—o0

===+ 0/0.05
-=+ 0/0.05/0.1

Scenario
—0

===+ 0/0.05
-=-0/0.05/0.1

Scenario

—0 ~
L

===+ 0/0.05 o

-= 0/0.05/0.1

Convex percentage

0.74

0.254

AR AS NS S TR YR R e3 e

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
i i ;

(a) Percentage of convex sender (b) Mean entropy of sender strate- (c) Mean entropy of receiver
strategies for a = 0. gies for a = 0. strategies for a = 0.
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scenarios: evolving alone (‘0’), with an « = 0.05 population (‘0/0.05’), and with an additional
a = 0.1 population (‘0/0.05/0.1").

redefined in this section should be assumed to remain the same. First, if agents learn only within
their population, the imitation dynamic needs to consider only the expected utility against agents
of that population. We thus define the following expected utilities for a sender of type a:

EU%(m, t,, p® ZPO‘ talto) ZP“ (te|m)U (ta, t,)

and for a receiver of type a:

EUS (t;,m,0%) ZP (ta|m) ZPO‘t t)U (ta, tr)

The main difference from the previous model is that these expected utilities are not calculated
against all populations (o* and p*) but only against the agent’s own type (¢® and p®). This also
implies that population proportions do not play a role at this level of selection.

Regarding the imitation process, we can redefine the probability that a sender of type «
observes a randomly sampled agent play message m for observed state ¢, as:

P (mlt,) ZP“ talto) P2 (mlts)

and the probability that a receiver of type « observes a randomly sampled agent choose interpre-
tation ¢, given message m as:

P2 (tolm) = ZP"‘t\t *(t,m)

Again, the main difference is that agents make observations within their own population, so to
model a randomly sampled agent one needs only to take into account agents of the same type.
Population proportions again do not play a role in these calculations. Based on these formulas,
we can define the update step for a sender strategy of type a at time instant ¢ + 1 as:

i1 (mlt) o< P (m[t)EUZ, (m, t, pi')
and similarly for a receiver strategy of type « as:
iy (tlm) oc PR (tm)EUY, (t, m, oY)

Note that, because imitation and learning occur only within populations, these formulations are
essentially the same as for the single-population model of Franke and Correia (2017), only param-
eterized by type a.
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The selection process between different populations still follows the same motivation as before:
agents of a certain type that evolve successful strategies (with respect to other types) will be more
likely to survive and reproduce, benefiting the proportion of their population. The formulation
of the dynamic for the proportion of each type P(a) thus stays the same. In order to avoid
confusion, we want to stress that this means that these calculations rely on the definitions of
expected utility across populations (i.e. EUZ(m,t,,p*) and EU}(t;,m,0*)) and not the newly
introduced EU (m, t,, p*) and EUJ (t;, m, o).

Simulation results We ran the same number of simulation trials under the same conditions as
for the model with tight population interaction. In Figure 4 we plot the evolution of population
proportions for all trials of the multi-population scenarios. The first thing to observe is that
proportions evolve faster than in the model with tight interaction. Whereas in the latter no
given population ever reached much more than 70% proportion, in this model we see that many
trials resulted in one population fully dominating the others. In the two-population scenario,
some population reached at least 99% in 24 out of 25 trials. In the three-population scenario,
this happened in 18 out of 25 trials. More interestingly for our investigation, some trials actually
resulted in the population with @ = 0 being dominated. For the two-population scenario, o = 0.05
fully reached 100% in 8 trials (79, 86, 88, 89, 91, 93, 96, 98), a point from which it is technically
impossible for the other population to recover. In most cases the dominating population gains
its ground from the start, but in 5 cases we see a temporary advantage of & = 0.05 that is then
lost to the other population. In one interesting trial (85), a = 0.05 reached 99.87% only to then
steadily start losing ground to a = 0. For the three-population scenario, &« = 0 was reduced to
0% in 4 trials (152, 157, 159, and 175). In all of those cases, & = 0.05 clearly has the upper hand
over a = 0.1, despite a temporary advantage of the latter in some trials.

Because of the loose interaction between populations, different types can now evolve separately.
One consequence of this is that populations with a certain level of imprecision again reach convexity
faster than those without imprecision. In Figure 5 we plot, for each trial, the first iteration when
each type reached convexity. What we see is that, even though a = 0 usually reaches convexity
later, this is not always the case. This has certainly to do with the initial conditions of each trial,
since the randomly generated strategies can simply by chance be more favourable to reaching
convexity. More importantly, we also see that reaching convexity sooner is not a sufficient condition
for achieving population dominance. There were many trials where another type reached convexity
much sooner than o = 0 but its population was completely dominated nevertheless (e.g. 76, 84, 92,
and 99 in the two-population scenario; 156, 165, 168, and 172 in the three-population scenario).
It also does not seem to be fully necessary, given a few examples where o = 0 reached convexity
early on and another type ended up dominating (89 in the two-population scenario and 152 in the
three-population scenario).

Another consequence of the populations evolving separately in this model is that they do not
necessarily evolve towards the same equilibrium. In a sim-max game such as the one set up here,
there are only two stable equilibria. These are the two Voronoi languages of the kind shown in
Figure 1: one where the first message is used for the first half of the state space, and the other where
the second message is used for this region. In the multi-population model with loose interaction,
each population evolves independently towards one of these two equilibria. An important factor
determining which language strategies converge to is the random initial population configuration.
The populations are, however, not fully independent, since the process of selection of the level
of precision relies on the expected utility of one population playing against itself and the others.
And this is important because strategies in one equilibrium get the lowest payoff possible against
strategies in the other equilibrium. Now, if two populations evolve towards different equilibria,
whatever advantage one population has playing against itself could trigger a runaway effect by
causing an increase in its proportion, which in turn will increase the population’s relative expected
utility, potentially increasing their proportion further in the next round, and so forth. In this case,
one would expect that faster convergence towards convexity would be especially important for a
population’s success.
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Figure 4: Evolution of population proportions through time for each simulation trial of the loose
interaction model. Numbers on top of each plot identify each trial.
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Figure 5: First iteration with convex sender strategies for each simulation trial of the loose inter-
action model.
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Figure 6: Expected utilities for trial 88 of the loose interaction model. Vertical lines demarcate,
for each type, the iteration where convexity was achieved.

In the two-population scenario, of the 8 trials where a = 0 was reduced to 0%, all but two
(88, 98) ended with the two populations each close to different equilibria. In the three-population
scenario, the population with o = 0 evolved towards the same equilibrium as the other two in 1 of
the trials where it was eliminated. In the other 3 trials, in 2 it evolved to a different equilibrium
than the other two, and in 1 it evolved towards the same equilibrium as a = 0.05 (but different
to the one a = 0.1 evolved towards). Again, we do not find a clear case for this being a decisive
factor in the success of populations with some imprecision. The same goes for the impact of an
initial advantage in expected utility creating the runaway effect we just mentioned. Despite none
of these three factors (including reaching convexity sooner) sentencing the demise of @ = 0 with
certainty, they do seem to conspire together to bring it about. In most trials where the type was
eliminated, in both the two- and three-population scenarios, @ = 0 ended up evolving towards
a different equilibrium than the other types, and either had an initial disadvantage in expected
utility, or reached convexity much later. These factors can thus be seen as indicators at best, and
the story of how a population with imprecision ends up dominating one without it seems to be
more complicated than expected.

This is not surprising, since we are facing a complex dynamical system with various interacting
components (sender and receiver strategies and multiple populations). Just as an example of this,
in Figure 6 we plot the expected utilities of sender and receiver strategies for both populations
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of trial 88. The curves up to where o = 0.05 achieved convexity seem to suggest that the sender
strategy of that type was evolving towards the same equilibrium as the receiver strategy of the
other. The moment where the population reaches convexity marks the point where the sender
strategy of o = 0.05 aligns with its type’s receiver strategy and this coincides with the moment
when the population seems to gain real traction over the other type (see again the plot for trial
88 in Figure 5). In this particular case, reaching convexity seems to have made an important
difference.

6 Conclusions

Vagueness presents a challenge to both procedural and instrumental pictures of rationality alike.
In the context of game-theoretical models of language, this takes the form of a question about
evolution: how can vagueness persist if it characterizes demonstrably less efficient communication?
Most existing proposals in the literature attempt to explain this by considering agents with some
degree of bounded rationality. Despite the many ways in which our rationality is inevitably
limited, the argument for the pervasiveness of vagueness in natural language would be much
stronger if one could also find associated advantages. In this paper, we argued that finding those
might require us to go beyond a local notion of rationality, as two of the proposals reviewed
here (Franke and Correia, 2017; O’Connor, 2014) suggest. We advocate moving towards an
ecological approach, studying vagueness in more heterogeneous ecosystems. Language is part
of a very complex system (Beckner et al., 2009) that involves many components interacting in
often unpredictable ways. An ecology of vagueness would involve studying models where different
populations can evolve and interact with each other, where different language games can be played
between individuals, where the environment is uncertain and changing, or anything else that more
closely approximates the real context of language evolution.

In light of this picture, we have proposed two variants of a concrete multi-population signaling
model to test the hypothesis (Franke and Correia, 2017) that certain features of imprecise imita-
tion, like promoting faster convergence and regularity, could prove beneficial in contrast with full
precision. Analysing these models did not provide us with a clear-cut answer, and revealed that the
story is much more nuanced than initially expected. In a variant where populations with and with-
out imprecision interact tightly, although precision always has the upper hand, vagueness seems to
take a long time to be weeded out. When we let populations interact more loosely, we see a more
complex pattern of outcomes. These include scenarios where imprecise imitation dominates over
full precision, showing that strategies with vagueness can actually, under certain circumstances, be
more successful. Bringing several populations together in a more complex ecosystem thus allowed
us to not only spell out and test the original intuition, but also learn about unforeseen effects.
These models thus serve as an example of how moving to a more global perspective on rational-
ity can allow us to achieve a more detailed awareness of the complex interactions that might be
involved in sustaining vagueness in natural language. They can be seen, we believe, as a first step
towards an ecology of vagueness.
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