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Abstract

Signalling games are popular models for studying the evolution of meaning, but typical ap-
proaches do not incorporate vagueness as a feature of successful signalling. Complementing recent
like-minded models, we describe an aggregate population-level dynamic that describes a process
of imitation of successful behaviour under imprecise perception and realisation of similar stimuli.
Applying this new dynamic to a generalisation of Lewis’ signalling games, we show that stochastic
imprecision leads to vague, yet by-and-large efficient signal use, and, moreover, that it unifies evo-
lutionary outcomes and helps avoid sub-optimal categorisation. The upshot of this is that we see
‘as-if’-generalisation at an aggregate level, without agents actually generalising.

1 Introduction

Many concepts and expressions are vague. A vague category knows clear cases that fall under it, clear
cases that do not, and also so-called borderline cases. Borderline cases do not clearly belong to the
category, nor do they clearly not belong, and there may be differences between borderline cases in terms
of how well they represent the category in question. Vagueness does not seem to dramatically affect
the success of everyday communication, but it is troublesome for some of the most prominent theories
of language and meaning. This is especially so for the logico-positivist tradition of Frege, Russell, and
early Wittgenstein, which is challenged by the paradoxes vagueness gives rise to.

There are other intriguing aspects about vagueness. One perplexing issue is how vagueness could
arise and be maintained in the first place. This is an apparent puzzle for functionalist accounts that main-
tain that concepts and linguistic meanings evolved driven towards efficiency. Lipman (2009) argues that,
in common interest signalling situations, the existence of unclear borderline cases entails inefficiency of
categorisation or communication, or at least no advantage. The challenge is then to explain how vague-
ness can persist both: (i) under evolutionary pressure to be optimally discriminative, and (ii) without
undermining the possibility of evolving, learning and communicating with a meaningful language. A
number of authors have consequently tried to explain why vagueness evolved as something that is itself
useful (e.g. de Jaegher 2003; van Deemter 2009; Blume and Board 2014). Others have argued that
vagueness is a natural byproduct of limitations in information processing (e.g. Franke et al. 2011) or
of generalisation in low-level learning strategies (e.g. O’Connor 2014a). This paper contributes to the
latter line of thought.

We believe that vagueness in language and thought may have many reasons, not just one. We fo-
cus here on one a priori plausible reason for why vagueness is natural and pervasive. The idea is that
vagueness is, at least in part, due to imprecision in the perception of similar stimuli and imprecision in
the realisation of similar responses. On this view, vagueness in language may be seen as a necessary
sub-optimality due to limitations in another domain of cognition, first and foremost perception. It could
then be speculated that the whole system, perception and language together, may be an almost optimal
adaptation in a larger frame of reference, for example if we take into account the metabolic costs for
increased perceptual accuracy. We will not engage in such speculation here. Rather we will explore the
consequences of perceptual limitations on processes of meaning evolution in a suitable formal frame-
work. In other words, in order to address Lipman’s challenge seriously, and not just hand-wave it away
by appeal to the naturalness of vagueness, one needs to spell out how exactly could confusability of



stimuli come into play in a process of meaning evolution and how it could lead to vague but by-and-
large informative signal meaning. The formal model that this paper introduces does exactly that. But it
also does more. We find that confusability of stimuli can regularise and systematise evolving meaning.
This suggests a possibly advantageous side-effect that a natural cause of vagueness may have and that
might compensate some of the disadvantages that vagueness may have for communicative efficiency
(c.f. O’Connor 2014a).

The next section introduces the background against which the work presented here can be appreci-
ated. Section 3 introduces a generalisation of the replicator dynamic which is derived from the idea that
agents imitate other agents’ behaviour while possibly confusing similar states.1 This imprecise imita-
tion dynamic is explored in Section 4. Section 5 reflects and compares our approach to that of others.
Appendix A provides formal detail.

2 Background

2.1 Sim-max games & conceptual spaces

Signalling games, as introduced by Lewis (1969), have a sender and a receiver. The sender knows the
true state of the world, but the receiver does not. The sender can select a signal, or message, to reveal to
the receiver, who then chooses an act. In Lewis’ games, if the receiver chooses the act that corresponds
to the actual state, the play is a success, otherwise a failure. Certain regular combinations of sender
signalling and receiver reaction make messages meaningful, in the sense that their use is correlated sys-
tematically to certain states or acts. To investigate the conditions under which such meaning-generating
behaviour can evolve is a topic that we are only beginning to fully understand (e.g. Wärneryd 1993;
Blume et al. 1993; Huttegger 2007a; Pawlowitsch 2008; Barrett 2009; Huttegger et al. 2010; Skyrms
2010).

Similarity-maximising (short: sim-max) games are a variation of Lewis’ games where the receiver’s
actions are equated with the state space (one can think of the actions as choosing states) and different
states are allowed to be more or less similar to one another. While Lewis’ games treated communicative
success as a matter of black and white, sim-max games allow for shades of grey: the more similar the
receiver’s interpretation is to the actual state, the better. Signalling games with utility-relevant similar-
ities in the state space are fairly standard in economics (e.g. Spence 1973; Crawford and Sobel 1982),
but have received particular attention in a more philosophical context for reasons that will become clear
presently.

Formally, a sim-max game consists of a set of states T , a set of messages M typically with much
fewer messages than states, a probability distribution P ∈ ∆(T ) such that P(t) gives the probability that
state t occurs, a similarity metric2 on states Sim : T × T → R such that Sim(t1, t2) is the (physical)
similarity between t1 and t2, and a utility function U : T × T → R such that U(t1, t2) is the payoff for
sender and receiver for a play with actual state t1 and receiver interpretation t2. We identify the receiver’s
acts with the states of the world, so that the game is one of guessing the actual state, so to speak. For
the modelling purposes of this paper, we make the simplifying assumption that T is a set of points in
Euclidean space, whose closeness to each other tracks physical similarity. Perceived similarity, where it
is necessary, would be a monotonic function of physical similarity. Likewise, the utility function should
be a monotonically increasing function of physical similarity.3 Non-probabilistic sender behaviour can

1Much previous work has investigated the interplay of adaptive dynamics, including imitation-based update protocols, on
the one hand, and noise or mutation, on the other hand (e.g. Foster and Young 1990; Fudenberg and Harris 1992; Kandori et al.
1993; Young 1993; Fudenberg and Imhof 2006). While this line of research often looks at finite populations and the extreme
long-term behavior of the system under generic randomness, the focus here is on a quite particular source of stochastic noise
and its quite particular role in the evolution of meanings through signalling.

2A metric is a function of distance between any two points in a given space. It should satisfy certain axioms that ensure
behaviour that one would intuitively expect from the words ‘similarity’ and ‘distance’ alone, but these details do not matter
for the purposes of this paper. The assumption that state similarity forms a metric is conceptually loaded, but we follow the
literature here and conceive of it as a first and pragmatic simplification, possibly to be dispensed with later.

3Section 4.1 motivates particular choices of similarity and utility functions that we will explore in more detail.
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Figure 1: Example of a Voronoi language on T = [0, 1]. The pure sender strategy s uses one signal for
the lower half, and another for the upper half of the unit interval. The pure receiver strategy r selects the
central elements in the respective intervals. See Jäger et al. (2011) for further details.

be represented by a pure strategy s ∈ MT , which deterministically defines which message would be used
for each state. Similarly, a pure receiver strategy is a function r ∈ T M.

Jäger et al. (2011) showed that the evolutionarily stable states of sim-max games with infinitely many
states in n-dimensional Euclidean space T ⊆ Rn and a quadratic loss function for utilities U(t1, t2) =

−(t1−t2)2 are remarkably systematic: the evolutionarily stable states are demonstrably so-called Voronoi
languages. Roughly put, a Voronoi language is a pair of sender and receiver strategies, such that the
sender strategy partitions the state space into convex categories, while the receiver’s interpretations are
the central spots in each category. A subset X of Rn is convex if, informally put, all points in X are
connected via a straight line that lies entirely in X; X has no gaps or dents. For example, if T is the unit
interval and all states are equiprobable, a Voronoi language with two messages could have the sender
use one message exclusively for all points in the lower half of the unit interval and another for all points
in the upper half; the receiver’s interpretations of messages are the central points, .25 and .75, in the
respective intervals. See Figure 1 for an illustration.

It is intuitive to think that linguistic and conceptual categories are orderly in such a manner. For
example, if you consider two people ‘tall’, one with a height of 2m and another with a height of 2.2m,
it would be difficult to defend not considering a person with a height of 2.1m ‘tall’ as well. Another
example where this intuition is additionally supported by empirical data is that of colour categorisation.
The World Color Survey project (Cook et al. 2005; Kay et al. 2009) collected colour naming data for 110
unwritten languages of 45 language families. For the great majority of these languages a pattern can be
observed: basic colour terms are by and large convex (Regier et al. 2007; Jäger 2010). It is premature to
argue that these observations can be extended to all cases of categorisation. However, for the cases where
it does apply, the result of Jäger et al. (2011) is interesting because it demonstrates that signalling can
impose this kind of orderly categories on a metric space without that being the ulterior purpose of it all.4

Finally, these considerations are in line with a prominent school of thought in comparative linguistics
which also assumes that more abstract conceptual domains (e.g., spatial-topological relations, temporal
reference, or the meanings expressible by indefinite pronouns) are preferably carved up by the languages
of the world in such a way that meanings are connected regions on a so-called ‘semantic map’ (e.g. Croft
2003; Haspelmath 2003; Levinson et al. 2003).

There are at least two potential ways of interpreting the signalling setup. Sender and receiver can
be distinct entities, whose purpose is to communicate effectively about the actual state. In that case,
evolving Voronoi languages would explain why linguistic categories are well-behaved and orderly in the
way they appear to be. More abstractly, sender and receiver can also be thought of as distinct modules
in a single system, where the first module must discretise the information it is fed by selecting a small
sample of, suggestively, category labels. These are passed to a second module that tries to decode the
original information. In this case, evolving Voronoi languages would explain why conceptual categories
are well-behaved and orderly in the way that they appear to be. Seen in this light, sim-max games
may provide a foundation to approaches in cognitive semantics that rely on the notion of conceptual
spaces. Gärdenfors (2000, pp. 70–77), for example, has prominently argued that natural categories are
convex regions in conceptual space. If the conceptual space has a suitable metric, convex categories
can be derived from a set of prototypes. The category corresponding to prototype p is the set of points

4For the concrete case of colour categorisation, see also Jäger and van Rooij (2007) and Correia et al. (2016)
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that are more similar to p than to any other. In this way, Gärdenfors argues, an efficient categorisation
system can be obtained: storing the prototypes lets us recover the categories without having to store each
category’s extension. However, what is left unexplained is where the prototypes come from, and why
we would not see just any distribution of prototypes as an equally efficient classification system. This
is where sim-max games can contribute a principled approach to deriving, in an independent way, not
only convex categories but also prototypical exemplars belonging to them. These ideas, and more, are
developed further by Jäger (2007), Jäger and van Rooij (2007), Jäger et al. (2011), O’Connor (2014b),
among others.

2.2 Vagueness in sim-max games and conceptual spaces

This outline of an approach to categorisation using sim-max games leaves some problems unaddressed.
One of them is that, usually, natural categories for continuously variable stimuli neither have clear
boundaries, nor do they have unique, point-valued prototypes. We would like to account for the pos-
sibility of such vagueness, in particular: (i) clear positive examples of a vague category should show
a gradient transition to clear negative examples; (ii) prototypes should likewise be gradient regions,
peaking at the centre of the vague category they represent.

Douven et al. (2011) show that Gärdenfors’s conceptual spaces approach can be extended to account
for the existence of borderline cases. From the assumption that prototypes are extended, yet convex re-
gions in conceptual space, a construction algorithm is available that yields ‘collated Voronoi diagrams’
with thick boundaries representing borderline regions. Decock and Douven (2012) show further how
it is possible to arrive at a gradient transition between categories, by weighing in the distance of dif-
ferent borderline cases to various prototypical regions. This accounts for the first of the two desiderata
mentioned above, but still assumes that crisp prototype regions must be given.

Alternative approaches are taken by, for example, Franke et al. (2011) and O’Connor (2014a), who
show different ways how the above desiderata can be met by evolving strategies in sim-max games. To il-
lustrate what vague signalling would look like, let us briefly consider a sim-max game with six equiprob-
able states and two messages and what its equilibria would be like (see Jäger 2007 and O’Connor 2014a
for a more thorough discussion of equilibria of sim-max games). We assume that utilities are linearly
decreasing with decreasing similarity. Figure 2 shows three pairs of sender and receiver strategies.
States are arranged according to their similarity: the closer they are to each other, the more similar they
are. The pair in Figure 2a is not an equilibrium, because the sender’s non-convex use of signals is sub-
optimal given the receiver’s behaviour. Namely, if m1 is interpreted as t2 and m2 as t4, then the sender
would get a higher payoff from sending m1 in t3 than from sending m2, because (by assumption) t3 is
more similar to t2 than t5 is. In contrast, Figure 2b shows a maximally efficient equilibrium. This is a
partial pooling equilibrium in the sense that the speaker uses the same message for several states. Partial
pooling equilibria can be less inefficient than other non-pooling equilibria, if there are enough messages.
The strategy pair of Figure 2b is maximally efficient for the two-message case. So, while partial pooling
may entail inefficiency in some sense, and while partial pooling can hamper the evolution of maximally
efficient signal use (Huttegger 2007b; Pawlowitsch 2008; Huttegger et al. 2010), this is orthogonal to
our concerns about vagueness. A regular and natural yet vague signal use would look like the pair in
Figure 2c. This is not an equilibrium, but it gets close, so to speak. It shows smooth transitions across
similar states at the boundaries of categories and across acts around the most prototypical instances (as
indicated by decreasing thickness of arrows in Figure 2c).

2.3 Vagueness, functional pressure & transmission biases

The approach we take here is similar in spirit to that of Franke et al. (2011) and O’Connor (2014a), but
different in relevant detail. A more in-depth comparison is deferred until Section 5. Let us first motivate
our approach here, and spell it out in more detail in the following section.

Our conceptual starting point is the widely shared conviction that language is shaped by at least two
forces, which may, on occasion, pull in opposite direction. On the one hand, there is functional pressure
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m1 m2

t1 t2 t3 t4 t5 t6

(a) inefficient, non-convex, non-equilibrium

t1 t2 t3 t4 t5 t6

m1 m2

t1 t2 t3 t4 t5 t6

(b) maximally efficient equilibrium, partial pooling

t1 t2 t3 t4 t5 t6

m1 m2

t1 t2 t3 t4 t5 t6

(c) almost efficient, probabilistic, intuitively vague

Figure 2: Examples of strategy pairs in sim-max games. Sender strategies map states onto messages (top
two rows); receiver strategies map messages onto states (bottom two rows). In Figure 2, the thickness
of arrows indicates the probability of a choice in a probabilistic strategy.

towards efficient communication. On the other hand, there is systematic error, noise or imprecision in
the transmission of linguistic behaviour, knowledge or traits. As an example of the latter, consider a
child learning syntactic rules from a parent generation. The child must infer these unobservable rules
from observable speech. Inductive biases may influence which syntactic rules are likely to be inferred
from (finite) parental input. Over the course of many generations, the effects of such biases can, in a
manner of speaking, ‘accumulate’ and lead to surprising results, such as the evolution of compositional
form-meaning mappings or the use of regular recursive syntactic structure. This can happen when the
effects of transmission biases are isolated, as in iterated learning models (Kirby and Hurford 2002;
Smith et al. 2003; Griffiths and Kalish 2007; Kirby et al. 2014), or when they interact with functional
pressure towards efficient communication, for example as formalised in the replicator mutator dynamic
(e.g. Nowak et al. 2000; Nowak et al. 2001).

The emphasis of previous models that studied the effects of transmission infidelity on the evolu-
tion of language has been on inductive biases and the systematicity, compression and regularisation that
they can introduce. Here, we would like to show that transmission noise of a different kind can lead to
regularisation as well and also give rise to vague meaning. We find that shared perceptual biases that
perturb the transmission of successful signalling behaviour can regularise, facilitate and accelerate the
evolution of meaning conventions, albeit at the cost of vagueness. Concretely, we formalise the expected
change in the behaviour of a population of agents that try to imitate other agents’ signalling behaviour.
We assume, however, that both observation of others’ behaviour, as well as realisation of behaviour, are
both systematically perturbed by noise. The resulting population-level dynamic generalises the replica-
tor dynamic (Taylor and Jonker 1978) in its interpretation as a cultural evolutionary dynamic based on
imitation (e.g. Helbing 1996; Schlag 1998). The inclusion of confusability of stimuli does not under-
mine the possibility of evolving communicative signalling behaviour. Instead, it leads to the evolution
of vague meanings. It moreover accelerates the emergence of communicative signalling because it uni-
fies and regularises evolutionary outcomes, making it appear as if agents were applying inductive biases
or generalising over partial observations, when this is actually the sole effect of confusion of similar
stimuli.
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t1 ∈ T

P(t1)
m ∈ M
σ(m | t1)

t2 ∈ T

ρ(t2 | m)

N S R

Figure 3: A round of play in a sim-max game with behavioural strategies: Nature (N) chooses a state
t1 with probability P(t1); a random sender (S) selects a message m with probability σ(m | t1); a random
receiver (R) selects a state t2 with probability ρ(t2 | m). Payoff for both sender and receiver is given by
U(t1, t2).

3 Imprecise imitation

Signalling agents can adapt their dispositions to act, given some feedback about their past success, in
multiple ways. Usually, we would assume that changes in behaviour should, at least on average, lean
towards increasing chances of communicative success. Such behavioural adaptations can be described at
different levels of abstraction. At the level of individual agents, we can picture a more or less idealised
process of how each agent adapts dispositions for future actions based on various pieces of informa-
tion available to the agent. More abstractly, at the level of a population of agents, we can describe
how average behavioural dispositions will evolve. The population-level perspective abstracts over small
stochastic fluctuations and zooms in on the general tendency or direction of evolution that ensues from
behaviour at the agent-level.

To better understand the interaction of confusability of stimuli and selective pressure towards suc-
cessful communication, we look at a population-level dynamic that describes the most likely evolution-
ary path of a population of signalling agents who imitate other agents’ behaviour but are liable to confuse
states for one another. In the special limiting case where state confusability vanishes, the process is just
the well-known replicator dynamic (Taylor and Jonker 1978), which should therefore be briefly reviewed
first.

3.1 Replicator dynamic in behavioural strategies

Fix a sim-max game with finite states T and messages M. As usual, we assume that the receiver chooses
states in T in response to messages. Let P(·) ∈ ∆(T ) be the prior distribution over states and U : T×T →
R the utility function shared by senders and receivers in the population. A behavioural strategy is a
function that maps an agent’s choice points to a probability distribution over available choices.5 The
sender’s behavioural strategies are functions σ ∈ ∆(M)T , thus mapping each state t ∈ T to a probability
of each message m ∈ M being sent in t; the receiver’s are functions ρ ∈ ∆(T )M, thus mapping each
message m ∈ M to a probability of each interpretation t ∈ T being chosen in response to m. Although
behavioural strategies are probabilistic, evolutionary modelling usually imagines that every individual
agent has a non-probabilistic strategy. Behavioural strategies then capture average population behaviour.
Assuming a virtually infinite population, the number σ(m | t), for instance, is then the probability that a
randomly sampled sender would send message m if the actual state was t. Similarly, ρ(t | m) is then the
probability with which a randomly sampled receiver interprets m as t. A play of a single evolutionary
game with behavioural strategies is illustrated in Figure 3.

5Our focus is on behavioural strategies, not mixed strategies, i.e., probability distributions over functions from each choice
point to an act, such as s ∈ ∆(MT ). Dynamics on behavioural strategies assume that agents can adapt their behaviour locally,
i.e., independently at each choice point. Our focus on behavioural strategies greatly reduces the complexity of the dynamic and
simplifies numerical simulations. But it also seems the more plausible choice for imitation-based update protocols of the kind
we consider here: agents only observe how, on some occasion, some other agent behaved in one particular situation, not how
that agent would behave in all relevant choice situations; they imitate the use of a single word, so to speak, not a whole lexicon.
(See Cressman 2003 for more on the difference between dynamics on mixed or behavioural strategies.) It is in this respect
that the cultural evolutionary dynamic introduced here differs most visibly from the replicator mutator dynamic (e.g. Nowak
et al. 2000; Nowak et al. 2001), which operates on mixed strategies and is motivated by assumptions of (asexual) biological
inheritance with transmission infidelity.
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The expected utility of choices at each choice point is:6

EU(m, t, ρ) =
∑
t′∈T

ρ(t′ | m) U(t, t′)

EU(t′,m, σ) =
∑
t∈T

P(t | m) U(t, t′) , where P(t | m) ∝ P(t)σ(m | t) .

Expected utilities are sums, over all possible concrete outcomes, of the utilities of these outcomes,
weighted by how likely they occur. For instance, the expected utility for the sender of choosing message
m, given state t and a receiver strategy ρ is the sum, for each interpretation t′, of the probability that
some random receiver will choose t′ given m times the actual utility of pair t and t′.

The discrete-time replicator dynamic tracks changes in frequency of choices in the population as
proportional to their expected utilities (Hofbauer and Sigmund 1998):7

σ′(m | t) ∝ σ(m | t) EU(m, t, ρ) , ρ′(t | m) ∝ ρ(t | m) EU(t,m, σ) . (3.1)

For a given choice point, say a state t, the probability of seeing m played by an average agent in the
population after the update is proportional to the probability of seeing it before the update, which is
σ(m | t), times the expected utility of m at state t. Intuitively put, frequencies of choices change by a
gradient of current frequency and a measure of how good they are.

The replicator dynamic is an abstract population-level dynamic that describes the mean expected
change of behavioural dispositions in a population of signallers. There are several ways of deriving the
replicator dynamic from agent-level processes of behavioural adaptation. We focus here on one of the
simplest: imitation of success (see Sandholm 2010). The intuitive idea is the following: every now and
then a random agent gets a chance to alter his behaviour for one of his choice points (say this is a sender
who gets to ‘reconsider’ his choice of message for state t); the revising agent then observes what some
random agent does at t, say m, and will henceforth play m in t with a probability given by the expected
utility of m for state t. See Appendix A.1 for a derivation of the standard replicator dynamic from this
update scheme.

3.2 Noise perturbed conditional imitation

Imitation of success, as described above, presupposes that agents make no mistakes when observing
states, or choosing interpretations. This may not always be an appropriate assumption, especially when
some states can be perceptually similar and therefore likely to be confused for one another. Human
performance in these situations has been studied by a number of authors in experimental psychology.
In a stimulus identification experiment (Luce 1963), subjects are presented in each trial with a stimulus
to be identified out of a fixed set. The more similar the stimuli are to each other, the larger the number
of errors subjects make. For example, in Robert Nosofsky’s experiments (1986), stimuli consisted of
16 semicircles with a radial line from the centre to the rim, varying in size (radius of 0.478, 0.500,
0.522, or 0.544 cm) and angle of the line (50o, 53o, 56o, or 59o). In over 9000 trials, the two subjects
identified the stimulus correctly only approximately 44% and 35% of the time. Similar experiments
have been conducted with other identification tasks, for example, for frequency and intensity of tones,
taste, hue of colours, and magnitude of lines and areas (see Donkin et al. 2015). The empirical data
confirms not only the pervasiveness of variation in the subjects’ ability to correctly identify stimuli, but
also the relation between similarity and likelihood of stimulus confusion, and further suggests that the
phenomenon might extend to all types of perception.

6The notation ∝, for ‘proportional to’, that is used here and hereafter means that the right-hand side might still need to be
normalised so as to have probabilities sum to one. In general, writing P(x) ∝ f (x) for any function f : X → R is shorthand
for P(x) =

f (x)∑
x′∈X f (x′) .

7The formulation given in Equation (3.1) is adequate only for cases like the one we will be looking at in Section 4, where
utilities are always non-negative and expected utilities are always positive.
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ta ∈ T

Pa(ta)

to ∈ T

Po(to | ta)
m ∈ M
σ(m | to)

ti ∈ T

ρ(ti | m)

tr ∈ T

Pr(tr | ti)

N S R

Figure 4: A round of play in a sim-max game with probabilistic confusability of states: Nature (N)
chooses an actual state with probability Pa(ta); a randomly sampled sender (S) observes to with prob-
ability Po(to | ta) and subsequently selects m with probability σ(m | to); a randomly sampled receiver
(R) intends to realise interpretation ti with probability ρ(ti | m) but actually realises interpretation tr with
probability Pr(tr | ti). Payoff for both sender and receiver is given by U(ta, tr).

In the context of imitation of success in a game where states have a degree of similarity between
them, the possibility of agents mistaking one state for another is thus something that should be taken
into account. Imitation dynamics could be affected by at least two sources of probabilistic noise:

1. observation noise: whenever a state ta actually occurs, the probability that an agent observes it as
to is Po(to | ta);

2. realisation noise: whenever an agent intends to realise interpretation ti, the probability that tr is
realised is Pr(tr | ti).

A round of play of a sim-max game with these two sources of confusability of states is pictured in
Figure 4. Note that, and this is crucial, senders respond to observations not actual states, receiver strate-
gies determine intentions not realised states, but payoff is calculated based on actual and realised states.
Behavioural strategies thus encode what agents actually do from their subjective point of view; or, put
differently, what they would do in a noise-free world. The noise-free situation depicted in Figure 3 is
then the special case where Po(to | ta) = 1 iff ta = to and Pr(tr | ti) = 1 iff ti = tr.

The presence of observation and realisation noise also affects imitation of successes. Here, we focus
on the main ideas, formal detail is provided in Appendix A.2. Take a sender who gets to revise behaviour
for state t. What agents can plausibly revise by imitation is their pure strategy, which maps perceived
states onto messages. When an agent gets to revise his strategy for the perceived state t, this need not
necessarily be the actual state. Moreover, when that agent observes t, another agent may perceive yet
a different state. Given what that latter agent perceives, his actual (pure) strategy will determine what
he plays. In sum, to describe how likely the potential imitator observes a message choice m, we are
interested in the conditional probability Po(m | t) that some other random agent selects m when the
first agent perceives t. This Po(m | t) is derived from the prior probability of states, the current sender
population behaviour σ and the given observation noise (see Appendix A.2). Eventually, the imitating
agent adopts m as his choice for t with a probability given by the expected utility of sending m when
perceiving state t. Expected utility should, of course, take the probabilistic confusability of states into
account as well.

Similar considerations apply to the receiver side. If an agent gets a chance to change his intended
interpretation of m, we need to look at the conditional probability Po(t | m) of observing another agent
realise interpretation t given that the first agent (and therefore the second as well) perceived m. This
depends on observation and realisation noise, as well as on the current receiver population behaviour ρ.

Appendix A.2 shows how imprecise imitation of this sort leads to mean changes in population fre-
quencies of choices that can be covered by the following discrete-time formulation:

σ′(m | t) ∝ Po(m | t) EU(m, t, ρ) , ρ′(t | m) ∝ Po(t | m) EU(t,m, σ) . (3.2)

This looks very much like the discrete-time formulation of the standard replicator dynamic in (3.1),
but there are, of course, the aforementioned differences. Firstly, expected utility here takes stochastic
confusability of states into account. Secondly, where the standard replicator dynamic had probabilities
σ(m | t) and ρ(t | m), we now have Po(m | t) and Po(t | m) respectively. If there is no observation or
realisation noise, Po(m | t) reduces to σ(m | t) and Po(t | m) reduces to ρ(t | m). The imprecise imitation
dynamic in (3.2) conservatively extends the classic case in (3.1).

8



●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
distance in physical space

imprecision

● 0.05

0.1

0.2

0.3

Figure 5: Examples of Nosofsky-similarity for different values of imprecision.

4 Exploring imprecise imitation

How does a tendency to confuse similar states interact with selective pressure towards more efficient
signalling strategies under the imprecise conditional imitation dynamic? If confusion probabilities
are moderate and regular, in that they track similarity of states, we might expect a regularising effect
also on evolving signalling strategies. Indeed, we hypothesise that confusion of states can give rise
to population-level aggregate behaviour that looks as if information about what is good for one state
percolates also to similar states. In other words, imprecise imitation may make signalling behaviour
on average look as if agents generalise across similar states, even if no agent actually generalises. To
explore whether confusion of states can have this effect, we turn to numerical simulation.

4.1 Setting the stage

To obtain concrete results, we must fix how to represent states, similarity of states, the conditional con-
fusion probabilities Po and Pr and the utilities of our sim-max games. Confusion probabilities between
states should be a function of perceptual similarity: the more similar two states are, the more likely they
could be mistaken for each other.

Let the state space consist of ns ≥ 2 states that are equally spaced across the unit interval, including
0 and 1. All states occur, for simplicity, with the same probability (i.e., Pa is uniform). The distance∣∣∣ ti − tj

∣∣∣ is the objective, physical similarity between two states ti and tj. Distance in physical space feeds
into a perceptual similarity function, as described by Nosofsky (1986):

Sim(ti, tj ; α) =


1 if α = 0 and ti = tj
0 if α = 0 and ti , tj

exp
(
−
| ti−tj |

2

α2

)
otherwise,

where α ≥ 0 is an imprecision parameter. When α = 0 agents perfectly discriminate between states;
when α → ∞ agents cannot discriminate states at all. Figure 5 gives an impression of Nosofsky-
similarity for different parameter values. Other formalisations of perceptual similarity are possible,
including ones that allow for different discriminability in different areas of the state space, but we stick
with Nosofsky’s similarity function for the time being, because it is mathematically simple, and an
established notion in mathematical psychology.

We further assume that the probability of confusing any two states ti and tj is proportional to their
perceived similarity and, to keep matters simple, that observation noise Po is simply the same as reali-
sational confusability Pr and that both are governed by the same imprecision parameter α:

Po(to | ta) ∝ Sim(to, ta ; α) , Pr(tr | ti) ∝ Sim(tr, ti ; α) .

For α = 0, we obtain trivial confusion probabilities: everything is reduced to perfect imitation and
the replicator dynamic. For α > 0, any state can be confused for any other state with some positive
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probability. For the uninteresting case of α→ ∞, confusion is maximal and every state can be perceived
or realised as any other state with probability 1/|T |.

As for utility, we define it in terms of similarity and introduce another free parameter, β ≥ 0. The
intention is for this parameter to model the amount of tolerable pragmatic slack, which should be allowed
to vary separately from perceptual imprecision:

U(ti, tj ; β) = Sim(ti, tj ; β) .

With β = 0, we regain the case of Lewis’ games where only a perfect match of actual state ti with re-
ceiver interpretation tj leads to a positive payoff. The higher β the more acceptable a wider environment
of interpretations tj around ti is (see Figure 5). This choice of utility function is governed partly by
convenience, but also because we believe it has the right general properties for a communicative payoff

function. Unlike utilities that are, say, linearly or quadratically decreasing in physical distance (c.f. Jäger
et al. 2011; Franke et al. 2011), utilities that are exponentially decreasing in negative quadratic distance
can model situations where a small amount of imprecision in communication is tolerable, whereas sim-
ilarly small differences in intolerably far away interpretations matter very little, with a smooth transition
between these regimes (c.f. O’Connor 2014a).

In order to simplify the analysis, we focus on games with two messages, i.e., we fix |M | = 2. In sum,
to structure thinking about the behaviour of our imprecise imitation dynamic, the system is governed by
three parameters: the number ns = |T | of states in the state space, imprecision α and tolerance β.

4.2 Simulation set-up

We ran 50 trials of the discrete-time dynamic in (3.2), starting with randomly sampled sender and re-
ceiver strategies, for each triplet of independent parameter values: ns ∈ {6, 10, 50, 90}, α ∈ {0, 0.05, 0.1, 0.2, 0.3},
β ∈ {0.05, 0.1, 0.2, 0.3}. Each trial ran for a maximum of 200 update steps. A trial was considered con-
verged, and thus stopped before the maximum of 200 rounds, if the total amount of change between
strategies before and after an update step was smaller than a suitably chosen threshold. It is not guar-
anteed that strategies at halting time had converged to the eventual attracting state, whether they ran for
200 rounds or not. Our notion of convergence is therefore only a categorical measure for reaching a
certain (well-considered, but eventually arbitrary) degree of stability. In other words, our notion of ‘con-
vergence’ is a measure of relative speed: is it true that the system reached a state in which evolutionary
adaptations had slowed down almost to a halt before 200 update steps? This is motivated by practical
concerns regarding length of simulation time, but also theoretically justifiable, because we hypothesise
that confusability of states leads to regularisation of evolving strategies, which would show exactly in
an increased speed of evolutionary trajectories towards well-behaved and regular signalling behaviour.

Representative examples for resulting strategy pairs are given in Figure 6. Figure 6a shows a strategy
pair at stopping time with 90 states, tolerance β = 0.1 and imprecision α = 0. Zero imprecision means
that the trial was effectively an application of the standard replicator dynamic. Noteworthily, the given
sender strategy approximates a pure sender strategy that crisply partitions the state space into non-
convex sets. The irregular shape of the receiver strategy suggests that the pictured strategy pair has not
yet reached a stable state. Indeed, the trial was stopped when reaching the maximum of 200 rounds. In
contrast, the outcome of a trial with identical parameters, except with imprecision α = 0.05, which is
shown in Figure 6b, had converged (in our technical sense) after 99 rounds. The sender strategy shows a
smooth blending from one ‘category’ to the other, and the receiver’s interpretations are rather extended
curves, peaking at a central point in the relevant ‘categories.’

These examples already show two interesting things. Firstly, inclusion of imprecision can lead to
seemingly well-behaved, yet vague strategies in the sense that we are after (see again Section 2.2). The
sender strategy in Figure 6b identifies clear positive and clear negative cases for each signal, with a
smooth transition in-between. The receiver’s interpretations of signals can be seen as smoothed-out
prototype regions. Secondly, (sender) strategies can approach non-convex pure strategies under the
replicator dynamic and linger there for vast amounts of time, possibly indefinitely. We see this in our
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Figure 6: Example strategies at stopping time. Each line corresponds to a message and plots, for each
state, the probability that the message is used.

limited-time simulations (e.g. Figure 6a), but this also holds, for some types of utility functions, for the
limiting case. This was first observed by Elliott Wagner, as mentioned by O’Connor (2014b). A full
analysis of the dynamics of sim-max games is beyond the scope of this paper, but we will see shortly
that diffusion from confusability of states clearly prevents evolutionary paths that meander for a long
time in the vicinity of non-convex strategies.

4.3 Measures of interest

To further explore our simulation results, we calculated metrics that aim to numerically capture how
vague, generally well-structured, and communicatively efficient the recorded strategy pairs were. En-
tropy captures the amount of systematicity or regularity in signal use. Convexity captures whether a
behavioural strategy would project onto a convex pure strategy. Expected utility measures the commu-
nicative efficiency of evolved strategy pairs.

Entropy. This classic information-theoretic notion captures the amount of uncertainty in a probability
distribution. Roughly put, entropy of a signalling strategy captures inverse distance from a pure strat-
egy. The usual definition of entropy applies directly to mixed strategies (see Footnote 5), but provably
equivalent metrics for behavioural strategies are ready to hand:

E(σ) = −
∑
t∈T

∑
m∈M

σ(m | t) · log(σ(m | t)) , E(ρ) = −
∑
m∈M

∑
t∈T

ρ(t | m) · log(ρ(t | m)) .

Values obtained by these definitions have lower bound of zero and an upper bound of, respectively,
log(|MT |) = |T | · log(|M|) and log(|T M |) = |M| · log(|T |). We work with values rescaled to lie in [0; 1]
for cross-comparability. The sender strategies in Figures 6a and 6b have entropy 1.19e−5 and 0.08,
respectively. The receiver strategies have respective entropies 0.43 and 0.81. In general, we expected
that vague languages would have higher entropy than crisp ones and that increasing imprecision would
lead to increased entropy, all else being equal.

Convexity. At least for sender strategies, which develop faster than receiver strategies, it also makes
sense to define a categorical measure of convexity that compensates for potential vagueness. To deter-
mine whether a sender strategy σ is convex despite possibly being vague, we look at the derived pure
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Figure 7: Means of gradient and proportions of categorical measures for β = 0.1, ns ∈ {6, 10, 50},
and α ∈ {0, 0.05, 0.1, 0.2, 0.3}. The plot shows the average of the entropies for the sender and receiver
strategy.

strategy s for which s(t) = arg maxm′∈M σ(t,m′). If that s is convex, we also count σ as convex. The
sender strategy in Figure 6a is not convex, while the one in Figure 6b is. If confusion of states can
regularise signalling strategies, like we hypothesised, we should see more convexity with increasing
imprecision all else equal.

Expected utility. We also recorded the expected utility of a strategy pair:

EU(σ, ρ ; β) =
∑
t∈T

∑
m∈M

∑
t′∈T

P(t) · σ(t,m) · ρ(m, t′) · U(t, t′ ; β) .

To make direct comparisons across different parameter settings, we normalise expected utility by the
maximal amount of expected utility obtainable in the relevant game. The strategy pair in Figure 6a has
a normalised expected utility of 0.99, the pair in Figure 6b has 0.95. Generally, vagueness and impre-
cision can be expected to decrease expected utility (c.f. Lipman 2009). The crucial question is whether
communicative success drops unacceptably fast with moderate levels of vagueness and imprecision.

4.4 Results

Figure 7 shows plots summarising a selected part of our findings. For perspicuity, we only plot results
for one level of tolerance β = 0.1, and leave out the case of ns = 90. Still, every qualitative trend
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Figure 8: More example strategies at stopping time of our simulations.

mentioned in the following applies to the whole set of results.
As expected, increasing imprecision leads to higher entropy and lower expected utility. Importantly,

however, imprecision does not necessarily lead to disastrous decline of communicative success. What
is more, in line with our hypothesis that mere imprecision in imitation behaviour can lead to behaviour
that looks as if agents generalise across similar stimuli, higher imprecision led to a higher number of
outcomes with convex sender strategies. It also led to higher rates of convergence. In fact, sufficient
imprecision always ensured convergence and convexity. It appears that perceptual imprecision leads to
more vagueness, slightly less communicative efficiency, but more regular, well-behaved languages in
shorter time.

Beyond promoting convexity and convergence, diffusion also has another interesting regularising
effect on the evolution of signalling. There is very little variation in the recorded metrics for evolved
strategies, at least for higher values of imprecision. On closer inspection, it turns out that variability in
low-imprecision conditions is not only due to non-convergence or non-convexity. Figure 8 gives two
more examples of strategy pairs at stopping time. Both are obtained for the same triple of parameters,
both converged before the maximum number of rounds, and both have convex sender strategies. How-
ever, they are not equally efficient. In fact, the pair in Figure 8a has a normalised expected utility of 0.99
while the one in Figure 8b only has 0.89.

Interestingly, this type of variability in evolutionary outcomes can be weeded out by imprecision. To
investigate this, we calculated the average distance between evolved sender strategies within each group
of trials that had identical parameter values. We determined the distance between strategies σ and σ′ as
the average Hellinger distance between distributions σ(t) and σ′(t) at each choice point t:

HD(σ,σ′) =
1

|T | ·
√

2
·
∑
t∈T

√∑
m∈M

( √
σ(t,m) −

√
σ′(t,m)

)2
.

To compensate for the arbitrariness of message use, we set the distance between strategies σ and σ′ to be
the maximum of HD(σ,σ′) and HD(σ∗, σ′) whereσ∗ isσwith reversed message indices. An example of
the ‘within group distance,’ i.e., the average distances between all sender strategies obtained for the same
parameter values, is plotted in Figure 9a for β = 0.1 and ns = 10. Despite some quantitative differences,
the general trend is the same for all other parameter settings that we tested: with increasing imprecision,
the resulting sender strategies were much more alike (modulo swapping of messages). This means that
perceptual imprecision can speed up and unify evolutionary outcomes. It can amplify the emergence
of sender strategies that are not only convex, but also regular in that they induce a vague category
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Figure 9: Within group measures for all runs with β = 0.1 and ns = 10.

split exactly in the middle of the unit interval. This is then reflected in the ‘within group expected
utility’, defined as the average expected utility that each evolved language scored when playing against
an arbitrary other language obtained for the same parameter values. Figure 9b gives a representative
example.

5 Discussion

Our imprecise imitation dynamic leads to by-and-large successful signalling behaviour, even in the pres-
ence of noise, that shows the hallmarks of vagueness as desired. It also gives rise to population-level
behaviour that looks as if agents are generalising across similar stimuli. Here, we would like to reflect
briefly on some further conceptually relevant points and compare our approach to related work.

5.1 Levels of vagueness

The imprecise imitation dynamic was introduced in Section 3 as tracing changes in the overall distri-
bution of pure strategies in a population: σ(m | t) was said to represent the probability that a randomly
sampled sender would have a strategy that responds with m to t (likewise for the receiver). This is in
line with the standard interpretation of the replicator equation, but we should consider its philosophical
implications. Based on this picture, vagueness in signal use would seem to be characterised as a strictly
population-level phenomenon since it arises in a signalling system from the inability of individual agents
to fully align their (non-vague) strategies because of imprecision. This is, we believe, a plausible mech-
anism that can already explain the existence of vagueness in a language even if we assume that each
agent commands a non-vague idiolect.

We would not, however, want to commit to the idea that vagueness does not exist at the level of
individual agents. True, our derivation of the imprecise imitation dynamic assumed that agents carry and
revise pure strategies. But that was an assumption of convenience, not of conviction. Moreover, even
if individual agents command a non-vague pure strategy, the realisation of that pure strategy, according
to our model, is bound to be vague: the same agent could signal differently in repeated exposure to
the same state because of the non-deterministic nature of observation noise. We have used the term
‘observation noise’ here, but this could equally well be interpreted as an inseparable component of an
agent’s ‘signalling faculty.’ In this sense, then, the model might be compatible with a picture of agents
who have internalised a vague signalling strategy. It would need to be seen, however, how revision of
non-deterministic individual-level behaviour must be spelled out rigorously and whether the resulting
population-level dynamic would be equivalent to our present proposal in all relevant respects.
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5.2 Evolutionary benefits of imprecision

The inclusion of confusability of similar states has noteworthy effects on the evolving meaning of sig-
nals. It transpired from our results that imprecision can have further accelerating and, surprisingly,
unifying effects on meaning evolution. The unifying property of perceptual imprecision could be consid-
ered an evolutionarily beneficial side-effect. A certain degree of imprecision can lead to higher ‘within
group expected utility’, defined as the average expected utility that each evolved language scored when
playing against an arbitrary other language obtained for the same parameter values. Figure 9b gives a
representative example. The observation repeats for other parameter values: while imprecision might
decrease the communicative efficiency of individual languages, it increases the conceptual coherence
and communicative success between independently evolving strategies. It is as if mere confusability of
states imposes a regularity constraint on evolving categories.

The phenomenon could potentially be more than just a side effect. Given the benefit of a certain
amount of imprecision we observe when comparing within group expected utility, it would be interesting
to study whether, under certain conditions, this group-level advantage could trump the individual-level
disadvantage of a vague language, and thus actually select for a certain amount of imprecision. This
could be achieved by letting the imprecision parameter be an evolving part in the dynamics as well. The
idea is for now mostly speculative, but we consider it an interesting avenue for future research. There
is additional motivation to consider its potential if we see it in the eyes of multilevel selection theory
(Wilson and Sober 1994; O’Gorman et al. 2008).

5.3 Related work

O’Connor (2014a) makes a proposal related to ours based on a version of reinforcement learning for
sim-max games, in which successful play leads to reinforcement of choice options also for states similar
to the ones that actually occurred. This not only leads to vague signalling of the appropriate kind,
but also speeds up learning in such a way that, especially for sim-max games with higher numbers
of states, higher levels of communicative success are reached in shorter learning periods. Our results
complement and extend O’Connor’s. The most important differences are that (i) we obtain similar
regularising effects also for cases with low numbers of states and (ii) we do not assume that agents
have any kind of generalising capacity in and of themselves, even if that is only implicit in O’Connor’s
generalised reinforcement learning. State confusability has an effect on aggregate signalling behaviour
that can be described as generalisation without generalisers: the dynamics of imprecise imitation look
as if ‘conclusions’ about what works for one state are ‘carried over’ to similar states. This, however, is
merely an epiphenomenon in the sense that no single agent genuinely generalises over stimuli or reasons
about what a more systematic signalling strategy would be.

Franke et al. (2011) suggested a number of ways in which information-processing limitations could
lead to vague strategies. The model that is most clearly related to the present approach uses the notion
of a quantal response, also known as a soft-max response function (e.g. Luce 1959; McFadden 1976;
Goeree et al. 2008). The main difference between this and our present approach is in where stochastic
noise is assumed to reside. In case of a quantal response dynamic, it resides in the computation of
expected utilities; in case of imprecise imitation, it resides in perception and realisation of similar states.
There are cases, then, where evolving signalling behaviour, as predicted by these two approaches, is
quite different. Intuitively speaking, for a case with two messages, the further we venture away from a
prototypical interpretation of either message, the less discriminative a signalling strategy would be when
the source of ‘trembles’ is the computation of expected utilities: to wit, since both ‘tall’ and ‘short’ are
almost equally bad descriptions for a giant, quantal response dynamics predict that senders would be
almost indifferent. Sender behaviour that evolves under confusion of states does not have this puzzling
property, because a giant would not likely be confused for a dwarf.
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6 Conclusion

We set out to meet a technical challenge posed by Lipman’s problem (2009): is there a conceptually
sound and mathematically coherent formal model that shows how vague language can evolve under se-
lective pressure for efficient communication if agents tend to confuse similar stimuli? To address this,
we derived a generalisation of the replicator dynamic from an agent-level process of imprecise imitation.
The resulting population-level dynamic produced signalling behaviour that is at the same time regular
and by-and-large communicatively efficient, while also showing the crucial marks of vagueness. In a
sense, the model derives vagueness as a by-product of an arguably natural limitation on the discrimina-
tory power of signalling agents. Although inability to sharply discriminate similar stimuli may lead to
vagueness and bring about a (slight) decrease in communicative efficiency, there may also be an advan-
tage, not of vagueness itself, but of its cause. Systematicity in the confusability of states (which may be a
natural by-product of the perceptual system) supports ‘as-if’-generalisation at the population-level with-
out having to assume that agents themselves have any generalisation power. In this way, the presented
model extends research into the effects of transmission biases on processes of meaning evolution. While
most previous models have focused on inductive biases of language learners and the regularisation that
these may effect (e.g. Nowak et al. 2000; Nowak et al. 2001; Kirby and Hurford 2002; Smith et al.
2003; Griffiths and Kalish 2007; Kirby et al. 2014), we have shown here that shared perceptual biases,
of which such an effect was not necessarily expected, can also regularise, facilitate and accelerate the
evolution of meaning conventions.

Appendix A Imprecise conditional imitation

The goal of this section is to provide technical details for Section 3. We first show, in Section A.1, how
to derive the standard replicator dynamic from noise-free imitation of success. Then, in Section A.2, we
derive the imprecise imitation dynamic by a parallel chain of arguments.

A.1 Deriving the replicator dynamic from imitation of success

The main idea behind imitation of success is that agents imitate the behaviour of other agents at some
choice point with a probability that is proportional to the expected utility of the latter agents’ choice.
Since the sim-max games that we are looking at here have positive utilities upper bound by 1, we can
identify the switching probability with the expected utility.

Let’s consider sender strategies, as the receiver case is parallel. Call (misleadingly!) the agent who
gets a chance to change behaviour ‘learner’ and the possibly to-be-imitated agent ‘teacher.’ A random
learner is drawn from the population and given a chance to change behaviour at choice point t. The
probability that our learner plays m is σ(m | t). The learner observes what a randomly sampled teacher
does at t. That would be m′ with probability σ(m′ | t). The learner then starts using m′ instead of m with
probability EU(m′, t, ρ). (Of course, m′ and m could be the same; the learner could even be the teacher
as well, by random sampling.)

If agents get repeated update chances for their choice points, the expected change of frequency of
m-choices at t becomes:

σ̇(m | t) = P(m′ → m, t) − P(m→ m′, t) , (A.1)

where P(m′ → m, t) is the ‘inflow’ probability that agents switch from any m′ to m and P(m → m′, t) is
the ‘outflow’ probability that agents switch from m to any m′. Since we are dealing with expectations in

16



a huge population, these can be spelled out as:

P(m′ → m, t) =
∑
m′

σ(m′ | t)︸   ︷︷   ︸
learner plays m′

· σ(m | t)︸  ︷︷  ︸
teacher plays m

· EU(m, t, ρ)︸       ︷︷       ︸
EU teacher choice

P(m→ m′, t) =
∑
m′

σ(m | t)︸  ︷︷  ︸
learner plays m

· σ(m′ | t)︸   ︷︷   ︸
teacher plays m′

· EU(m′, t, ρ)︸        ︷︷        ︸
EU teacher choice

From this, we can simplify the expression of expected change in Equation (A.1) to:

σ̇(m | t) = σ(m | t) · EU(m, t, ρ) − σ(m | t) ·
∑
m′
σ(m′ | t) · EU(m′, t, ρ)

= σ(m | t)︸  ︷︷  ︸
frequency of m at t

(
EU(m, t, ρ)︸       ︷︷       ︸

EU of m at t

−
∑
m′
σ(m′ | t) · EU(m′, t, ρ)︸                           ︷︷                           ︸

average EU at choice point t

)
.

This latter formulation is the continuous-time version of the replicator dynamic. We obtain a discrete-
time formulation from it by assuming that discrete update steps are infinitesimally small, so that:

σ̇(m | t) = σ′(m | t) − σ(m | t)

=
σ(m | t) EU(m, t, ρ)∑

m′ σ(m′ | t) EU(m, t, ρ)
− σ(m | t)

=
σ(m | t) EU(m, t, ρ) − σ(m | t)

∑
m′ σ(m′ | t) EU(m, t, ρ)∑

m′ σ(m′ | t) EU(m, t, ρ)
.

By dropping the denominator, which is constant for all m for fixed t, we obtain the above continuous-
time formulation.

A.2 Imitation of success with imprecision

The above derivation of the replicator dynamic assumes that agents can discriminate choices and choice
points perfectly. Let’s dispense with that assumption. With an eye toward sim-max games, we will as-
sume that states, but not messages, may be confused for one another.8 Confusability of states will affect
how agents behave, how they perceive the behaviour of others, and the expected utilities of behavioural
dispositions.

To keep matters simple, let us assume that agents carry pure dispositions to act. Noise can affect the
realisation of these strategies. As a sender, every agent maps states to messages: these are subjectively
perceived states, and no longer necessarily also the actually occurring states. As a receiver, every agent
maps messages to state interpretations: these are intended interpretations that need not always be faith-
fully realised. This means that behavioural strategies σ and ρ represent the average proportions of actual
behavioural dispositions in the population, the realisation and observation of which can be distorted by
agents’ confusion of similar states.

If ta is the actual state, let Po(to | ta) be the probability that a given agent observes state to. Similarly,
if a given receiver intends to select interpretation ti, let Pr(tr | ti) be the probability with which state
tr is realised. A single round of play of a sim-max game is then governed by five pieces of stochastic
information, where previously there were only three (see Figures 3 and 4).

Expected utilities of choices at choice points should likewise take into account that actual states need
not be observed states, and intended interpretations need not be realised interpretations. First, note that

Po(ta | to) ∝ Pa(ta)Po(to | ta)

8It is relatively straightforward to also incorporate confusability of messages, but this is irrelevant to our present purposes.
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is the probability that ta is actual if to is observed by an agent. The probability that a random sender
produces m when the actual state is ta is:

Pσ(m | ta) =
∑

to

Po(to | ta)σ(m | to) .

The probability that the actual state is ta if a random sender produced m is:

Pσ(ta | m) ∝ Pa(ta)Pσ(m | ta) .

The probability that tr is realised by a random receiver in response to message m is:

Pρ(tr | m) =
∑

ti

Pr(tr | ti)ρ(ti | m) .

This lets us capture the expected utilities for observed states (sender) and intended interpretations (re-
ceiver) by taking into consideration what the likely actual states and realised interpretations will be:

EU(m, to, ρ) =
∑

ta

Po(ta | to)
∑

tr

Pρ(tr | m)U(ta, tr) ,

EU(ti,m, σ) =
∑

ta

Pσ(ta | m)
∑

tr

Pr(tr | ti)U(ta, tr) .

If the conditional probabilities Po and Pr are trivial, i.e., assign probability 0 to the confusability of
non-identical states, above definitions reduce to the previous definitions of expected utilities. This also
legitimates the overload of notation.

Presence of potential imprecision in the form of non-trivial Po and Pr will also affect the dynamic
that ensues from imitation of successes. Since imprecision works slightly differently on senders and
receivers (the former confuse choice points, the latter confuse choices), we need to look separately at
each case.

As before, suppose that senders receive a chance to change their behaviour independently for a given
choice point. In the present case, this would be a chance to change how to respond to a subjectively
perceived state to, which need not be the actual one. We must then consult the probability Po(m | to)
that, given that the learner observed to, he will simultaneously observe a randomly sampled teacher play
m. This is (with Po and Pσ as defined above):

Po(m | to) =
∑

ta

Po(ta | to) Pσ(m | ta) .

The ‘inflow’ and ‘outflow’ probabilities P(m′ → m, t) and P(m′ → m, t) that a randomly sampled learner
switches from any m′ to m or from m to any m′ in subjectively perceived state to are therefore:

P(m′ → m, to) =
∑
m′

σ(m′ | to)︸     ︷︷     ︸
learner plays m′ at to

· Po(m | to)︸     ︷︷     ︸
observe teacher play m

· EU(m, to, ρ)︸        ︷︷        ︸
EU teacher choice in learner’s view

P(m→ m′, to) =
∑
m′

σ(m | to)︸    ︷︷    ︸
learner plays m at to

· Po(m′ | to)︸      ︷︷      ︸
observe teacher play m′

· EU(m′, to, ρ)︸         ︷︷         ︸
EU teacher choice in learner’s view

The mean change to the proportion of m choices at state t are then:

σ̇(m | to) = P(m′ → m, to) − P(m→ m′, to)

=
∑
m′
σ(m′ | to) Po(m | to) EU(m, to, ρ) −

∑
m′
σ(m | to) Po(m′ | to) EU(m′, to, ρ)

= Po(m | to) EU(m, to, ρ) − σ(m | to)
∑
m′

Po(m′ | to) EU(m′, to, ρ) . (A.2)
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The case of the receiver is mostly analogous. Presented with an update opportunity for choice point
m, a learner will observe a random teacher choose interpretation to with probability:9

Po(to | m) =
∑

tr

Po(to | tr) Pρ(tr | m) .

Parallel to the sender case, this gives rise to:

ρ̇(t | m) =
∑

t′
ρ(t′ | m) Po(t | m) EU(t,m, σ) −

∑
t′
ρ(t | m) Po(t′ | m) EU(t′,m, σ)

= Po(t | m) EU(t,m, σ) − ρ(t | m)
∑

t′
Po(t′ | m) EU(t′,m, σ) (A.3)

The continuous-time formulations in Equations (A.2) and (A.3) have elegant and practical discrete-
time solutions in:

σ′(m | t) ∝ Po(m | t) EU(m, t, ρ) , ρ′(t | m) ∝ Po(t | m) EU(t,m, σ) ,

which is the discrete-time formulation of the imprecise imitation dynamic given in Equation (3.2). To
see how the discrete-time formulation gives rise to the continuous-time formulations above, let’s assume
that update steps are infinitesimally small, so that, for the sender case:

σ̇(m | t) = σ′(m | t) − σ(m | t)

=
Po(m | t) EU(m, t, ρ) − σ(m | t)

∑
m′ Po(m′ | t) EU(m′, t, ρ)∑

m′ Po(m′ | t) EU(m′, t, ρ)
.

As before, we drop the denominator, which is constant for all m for fixed t, and obtain the above
continuous-time formulation.
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